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1. Introduction. After the works of Calderén-Vaillancourt [1],
[2], Cordes [3] developed a new method by which, among others, the
L*boundedness can be proved easily. In particular, he showed that
if a symbol a(zx, &) defined on R*X R™ has bounded derivatives DiDfa
for |«|,|8] <[n/2]+1, then the pseudo-differential operator A=a(X, D)
is L*-bounded. Subsequently Kato [4] formulated the basic idea of
Cordes in a slightly different form and showed that the same method
can be used to prove that A is L’*-bounded if (14|&)"#!=l=PeD2Diq is
bounded for |a|<[n/2]1+2, |g|<[n/2]1+1, where p is a constant such
that 0<p<1l. These two results [3],[4] improve the order of the
differentiability required in [1], [2] for simple symbols a(zx, &).

Applying the Sobolev lemma, a symbol satisfying one of the suf-
ficient conditions above is necessarily continuous. In this paper, we
obtain some classes of bounded pseudo-differential operators whose
symbols are not necessarily continuous (see Theorems 2 and 3). The
key point is the fact that if the derivatives of a symbol up to some
order can be estimated by the L?-norm (1 <p <o), then the associated
pseudo-differential operator is L*-bounded (see Lemma 1). As corol-
laries, we obtain also the sufficient conditions for L*-compactness.

2. Definitions and notations. Given any tempered distribution
a on R* X R™, the pseudo-differential operator A=a(X, D) is defined by
@.1) SrcamSAU, V) gepm) =S’(Rﬂx1}m>§a» W) S/ (rmxrm)s

w(w, &)= (2x)~"*e"**u(&)v(x),

where u,v € S(R*) (the Schwartz space). As usual, (2.1) may be
written symbolically as

2.2) Au(x)=a(X, D)u(x)=(2z)~"* f déet*za(x, £)Yi(s).

If in particular a(z, §)=x,, we have A=X,, the operator of multipli-
cation by z;. If a(x, &) =¢;, we have A=D,=—19/0x;.

We denote by F[1, o] the set of all strictly increasing finite
sequences of numbers in the interval [1, oo]; {p,} € F[1, co] means that
there exist an integer ¢=1 and {p,}={p;, -- -, 0}, 1=0,<-.-<p,Zo0.
Given any {p,}e F[1, 0], we define the subspace L"(R"XR") of
S'(R* X R*) as LY (R"XR") =} pc s, L*(R" X R"). We define also
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@.3) Wlwa= inf (3 @7, lr).

pe{p;

p€ {P;}
fpELP(RnXR™)

With the norm |||z, the space L'*#(R"x R™) forms a Banach space.

We denote by B(L*(R™) the set of all bounded linear operators
on L*(R™) with the operator norm ||-|. By C(L*R")), we denote the set
of all compact operators on L*(R"). By |||, (0<p=<o0), we donote the
various norms defined for compact operators T in terms of their
characteristic numbers (i.e. the eigenvalues of (T*T)Y?, arranged in
decreasing order and repeated according to multiplicity). By
C,(L*R™)), we denote the set of all compact operators T such that || T'||,
is finite. In particular C,(L*R™)) is the trace class and C,(L*(R")) is
the Hilbert-Schmidt class.

3. Results. 1) Boundedness. Theorem 1 (cf. Cordes [3,
Theorem D] and Kato [4, Theorem 5.2]). Let acS'(R"XR"™ with
(1—-4,)'A—4,)'a € L*YR" X R"™) for some s,t>n/4 and {p,} € F[1, co].
Then a(X, D) is L*-bounded. Moreover
3.1) (X, D)|SChss |A—4)*A—4d.) 0| 20,
where the constant C, ,, , is independent of a and {p,}.

Theorem 2 (cf. Cordes [3, Theorem B{] and Kato [4, Theorem 5.1]).
Let {p,;} e F[1, 00]. If DiDfa € L (R*XR") for |al,|f|<[n/2]+1, then
a(X, D) is L*-bounded. Moreover
3.2) loX,D)|<C, ¥ | DiDiallzwa.

lal, |81 Sn/21+1
Here and hereafter C, denotes a positive constant independent of a
and {p,}.

Theorem 3 (cf. Kato [4, Theorem 5.3]). Let {p;} e F[1, o] and
0<p<1. If (+|&pUei-l*PeDeD2a € LYNR™ X R™) for |a|<[n/2]142, |B]
<[n/2]1+1, then a(X, D) is L*~-bounded. Moreover
3.3) la(X, D)|=C. 2 n (L4|&pUei=tebe D2 Dig || 1125 .

lals[n/2
181=[n/2]+1

Theorem 3’. Let {p,} € F[1, o] and 0<p<1. If
(1+|z-1#0sD2Dta ¢ LA (R X R™)
for lal<[n/2]+1, gl <[n/2]+2,
then a(X, D) is L*-bounded. Moreover
@3y & DISC, > |A+@)i«-#DiDiafyivo.
' FEGE

2) Compactness. Here we denote by yz(z, &) the characteristic
function of the set {(x, &) e R* X R"; |af+|&F>R?.

Theorem 4 (cf. Cordes [3, Theorem E). Let {p,} € F[1, cc]. As-
sume DiDfia e LPHR"XR") and limg.. | xzD;Dia| »a=0 for |a|,|p|
<[n/2]+1. Then a(X, D) is a compact operator on L*(R™).

Theorem 5. Let {p;} € F[1, oo] and 0<p<1. Assume

(1+|&pY#i-1«dsDeDig e LPA(R™ X R™)
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and
lim |[xe(1+[£D"*'~'*P*D;Dia || tzs =0
for |a|<[n/2]1+2, ||<[n/2]+1.
Then a(X, D) is a compact operator on L*(R™).
Theorem 5’. Let {p;} € F[1, oo] and 0<p<1. Assume
(1+|x|)«1=1#0e D2Dtq, € L'*3(R™ X R™)
and
lim ||y +|z]) =120 D2Dég, || Lirg =0
for |a|<[n/2]1+1, |BI<[n/2]+2.
Then a(X, D) is a compact operator on L*(R™).
Remark. We note that the following conditions are mutually
equivalent for f e L¥#(R"x R™) with {p,}={p,, - - -, p,} € F[1, o].
(1) limg..|xefllzra=0.
(ii) Thereexistf;e L (R*"XR") (j=1, .-, ¢)suchthat f=3>7_,f,
and limz_.. |xzfellz2s=0 (=1, - -+, £).
(i) If oo e{p;} (i.e. p,=o0), there exist f, e L*(R"XR") (j=1,
.-+, ¢) such that f=>'_,f, and limg_., || xz/:llz~=0.
4, OQutlines of Proofs. 1) Proof of Theorem 1. A basic tool
is the following identity formulated by Kato [4];

@D @&, D)=[[  dedeb(e, e Te 29X, Dyetre e,

where * denotes the convolution on R”x R™.
Lemma 1. Let 1/p+1/q=1, 1=<p=<oo. If beL?(R*XR"™ and
G ¢ C(LX(R™) then b{G} € B(L*(R™), where

“4.2) b{G}:ijnxm dadeb(z, &)eitXe-ivPGeiPg-ieX

as a strong (tmproper) integral. The mapping b, G—b{G} has the
following properties.

(i) IB{GHIS@D™ bz |Gl

(ii) b=0 and G=0 imply b{G}=0.

(i) |(B{Ghu, V)l < (6] {| G}, w) (D] | G* [}, V)1

for u, v e LA(R™).

Here G=0 means that G is non-negative self-adjoint and |G| means
(G*G)~.

Let 4, be the unique solution within S’(R™) for (1—4)*,=4, where
s is a real number, 4 is the Laplacian, and ¢ is the delta function. It
is well known that -, € C=(R"\{0}),
@.3) Dy () =01 + |z s~ 1«!) as |x|—0 if 2s—n—|a|#£0,

) D=y (x) decays exponentially as |x|—oo.

Let g(x, &) = ,(®)y, (&) with s,t>n/4 then g(X, D) has an extension in
C,(LA(R™)) because of the following lemma.

Lemma 2. Let ¢, € LAR™) and g(x, &) =¢(x)p(&). If ¢ and ¢ decay
exponentially as |x|—oo, then g(X, D) has an extension G in C,(LA(R™))
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(i.e. 9(X,D)CG e C,(LA(R™)).

Replacing b in (4.1) by (1—4,)*(1—4,)'a and applying Lemma 1,
we can prove Theorem 1. For Theorem 2, it suffices that the assump-
tion implies that of Theorem 1. This assertion is obtained from the
following as in Cordes [3].

Lemma 3. For any s>0, we can write 1—4)"* =1 —4)~ W2+
—i231.185D;, where (1—4)""**® and S% have the L'-convolution
kernels V., and 0v,,.,/0x; respectively.

2) Proof of Theorem 3. Inthe same way as Kato [4], we use the
partition of unity {@,(&)};., on R"™ such that
4.4) |DiD()|=CA+|eD~"#e  for |p|<[n/2]1+1,

(4.5) [|&]| =K' e| < Ckeit-r if & € supp 9@,,
where C is a constant independent of k. Set
ak(x’s)sz(‘s)a(x’ é), k=1, 2’3, <+, 80 that

alz, &)= 2 0,8, X, D)= z (X, D).

In view of (4.4) and (4.5), there is a constant C independent of & such
that
4.7 (k"D )" (K De)Pa(x, §)| < Cri(§) ?g'ﬁ S s (%5 &)

for |a|=<[n/2]+2, |g|<[n/2]+1. Here y=p/1—p>0, y; denotes the
characteristic function of supp @,,

4.6)

(4.8) S s(®, &) =L 4| E=1Ve D Dia(x, &)|.
From (4.7) and Theorem 2 and the assumption of Theorem 3, we obtain
4.9) a,(X,D)C A, e C,(LXR")).

The following lemma which follows from Lemma 3 is equivalent
to Lemma 5.4 in Kato [4], but we need explicit formula for calculation.

Lemma 4. There exist ¢ >n/4+1/2, t>n/4 and non-negative
function pe L'(R™) such that u(x) decays exponentially as |x|—oo and

jdyk"’ﬂ(k’(x—y))xk(f)f" ,®  if [n/2] is odd,
(4.10) |b(2,)|=

dpk= (k™" E—D)F (2, p)  if [n/2] is even,

where
(4.11) b(@, &)=A—k 4, (1—k"4,)a(x, &),
(4'12) F(x’ 8):Ials§2 +z|fa,,e(x’ 5)'9

1g1&ln/2]+1

and the constants o, t and the ;unction u do not depend on k but only
on n.

With these numbers g, z, we define ¢g,(x, &) =, (Frx)y.(k~7¢). Then
(4.13) 9:(X, D)C G, € C(LXR™)

) (from (4.3) and Lemma 2),

(4.14) A,=b.{Gy} (from (4.1) and (4.2)),
(4.15) [(Azu, V)P S (0i ) {| Gil}re, W 2a( bi | {| Gi* [}, V) 10
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for u, v € LX(R™) (from Lemma 1 (iii)).
Taking (4.6) into account, we must prove the boundedness of >, A,.
To do this, it is enough to show that 3, |b,| (|G|} and 3, |b,| {|G* |}
converge with respect to the operator norm.

Let {p,}={py, - - -, v} € F[1, co]. From the assumption of Theorem
3, each f, ,(x, &) of (4.8) can be written as

(4.16) f“,ﬁ(x’ e)=:£;1fa,ﬁ,j(x’ 5)’ fa’,,g‘j € ij(RnXR"),
We put
4.17) T O= B, Menf8 Dl LR KR,

181sn/2]+1

From (4.10) and (4.12), we obtain that

. TP, if [n/2] is odd,
@1® 3 (G sl

>1Q;  if [n/2] is even,
j=1

where
(4.19) P Jﬁé ” dxds J Ay p(kr (@ —y)k () (Y, &)

X (e ¥e P |G| e'"Pe™ Xy, u),
(4.20) Q= ,f; ﬂ dzd§ j Al (E =)k ") (2, )

X (eieXe—izD ‘Gki eizDe—ié‘Xu’ ’M,).
In the same way we obtain that
4

- 2.
4.18) (b {GFfu, w={77
B=1 > Q¥ if [n/2] is even,

=1
where P} and QF are defined by replacing |G| by |G,*| in (4.19) and
(4.20).

In the case p;=1, we can easily obtain that
“.21) P, PF,Q; Q< Co |Gl i el

In the case p;=o0, we notice that G, and G, (k=2) are unitary
equivalent and that > i, y.(6— k) <2(C+|y) for & 7€ R™ (equivalent
to Lemma 5.5 in Kato [4]).

Lemma 5 (cf. Kato [4, Lemma 4.2]). Let g(x, &)= (x)V,(§). Then
the followings are valid.

i) D,9(X,D), 9(X,D)D,, |D|9(X, D) and 9g(X, D) |D| have exten-
ston in C(L*(R™) if s>n/4+1/2, t>n/4.

i) 9X,D)X,, X,9(X, D), 9(X, D) |X| and | X| g(X, D) have exten-
ston in C(LA(R™) if s>n/4, t>n/4+1/2.

Using above Lemma 5, we obtain as in Kato [4] that
4.22) P, P%Q,Qf<C.(G,+1G DI +IIDI G Iz |l

In the case 1<p,< oo, we use the Holder inequality and obtain that

P

~%

if [n/2] is odd,
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for any constant C>0
| dvute@— @7 @, 0

(4.23) <€) [ Ao~y @ 77, &
+(C/q)) | Ayl w—y)e1u(@),
[ dnute=re — - s )
4.23) =(C*/p,) [ dnplle "€ =)l )G, 1)

+(C/a)) [ dnuth€ =l zu)-

Using (4.23) and (4.28’), we can reduce the estimates of P;, P}, Q;, and

Q¥ in this case to those in the case p,=1 and in the case p;=co. Choos-

ing a suitable constant C, we obtain that

429 P, P}, Q,Qf<C,(IGl+IIG DI+ 11D Gl 1,225 | wlf.
Noting the symmetry of roles of (z, X) and (¢, D), we can

similarly prove Theorem 8. We can prove as in Cordes [3] that

Theorems 4, 5, and 5’ follow from Theorems 2, 3, and 3’ respectively.
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