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1. Introduction. After the works of Calder6n-Vaillancourt [1],
[2], Cordes [3] developed a new method by which, among others, the
L-boundedness can be proved easily. In particular, he showed that
if a symbol a(x, ) defined on R R has bounded derivatives DDa
for ]rl, I/] [n/2] + 1, then the pseudo-differential operator A----a(X, D)
is L-bounded. Subsequently Kato [4] formulated the basic idea of
Cordes in a slightly different form and showed that the same method
can be used to prove that A is L-bounded if (l+l[)-DDa is
bounded for [[=[n/2]+2, [fl[[n/2]+l, where p is a constant such
that 0pl. These two results [3],[4] improve the order of the
differentiability required in [1], [2] for simple symbols a(x, ).

Applying the Sobolev lemma, a symbol satisfying one of the suf-
ficient conditions above is necessarily continuous. In this paper, we
obtain some classes of bounded pseudo-differential operators whose
symbols .are not necessarily continuous (see Theorems 2 and 3). The
key point is the fact that if the derivatives of a symbol up to some
order can be estimated by the L-norm (l=p oo), then the associated
pseudo-differential operator is L-bounded (see Lemma 1). As corol-
laries, we obtain also the sufficient conditions for L-compactness.

2. Definitions and notations. Given any tempered distribution
a onRR, the pseudo-differential operator A--a(X, D) is defined by

(2.1) 3,R(Au,vR=3,R(a,w3,,
n/2w(x,)--(2z)- e ()v(x),

where u,v e(R) (the Schwartz space). As usual, (2.1) may be
written symbolically as

(2.2) Au(x) -a(X, D)u(x) (2)-n/2 .[ deiXa(x, )().
If in particular a(x, )----x#, we have A----X#, the operator of multipli-
cation by x#. If a(x, )--, we have A--D#----i/x#.

We denote by F[1, oo] the set of all strictly increasing finite
sequences of numbers in the interval [1, oo]; {p#} e F[1, oo] means that
there exist an integer g >__ 1 and
Given any (p#}eF[1, oo], we define the subspace L(R’R’) of.
’(R’ R’) as LPJ}(R’ R’)--pe} LP(R’ R’). We define also
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{ \

I]flL{P}-- inf
\ e{p /{p}(2.3)

IICa LP Rn Rn

With the norm .](, the space L((RR) forms a Banach space.
We denote by B(L(R)) the set of all bounded linear operators

on L(R) with the operator norm ]]. ]]. By C(L(Rn)), we denote the set
of all compact operators on L(R). By ]].] (0p), we donote the
various norms defined for compact operators T in terms of their
characteristic numbers (i.e. the eigenvalues of (T’T)1/, arranged in
decreasing order and repeated according to multiplicity). By
C,(L(R)), we denote the set of all compact operators T such that
is finite. In particular C(L(R)) is the trace class and C(L(R)) is
the Hilbert-Schmidt class.

3. Results. 1) Boundedness. Theorem 1 (el. Cordes [3,
Theorem D] and Kato [4, Theorem 5.2]). Let a e S’(RR) with
(1--A=)=(1--A)a e Li(R R) for some s, t >n14 and {p} e F[1, ].
Then a(X, D) is L-bounded. Moreover
(3.1) a(X, D)IIC.,=,
where the constant C,=,t is independent of a and {p}.

Theorem 2 (cf. Cordes [3, Theorem B] and Kato [4, Theorem 5.1]).
Let {p} e F[1, ]. If DDa e L(R XR) for , IflI[n/2] + 1, then
a(X, D) is L-bounded. Moreover
(3.2) a(X, D)IIC E IIDDalI,.

I-1,101[n/]+1

Here and hereafter C denotes a positive constant independent of a
and {p}.

Theorem (cf. Kato [4, Theorem 5.3]). Let {p} e F[1, ] and
0pl. If (l+ll)(li-I"l)"DDae L(l(RxRn) for la][n/2]+2,
[n/2]+l, then a(X,D) is L-bounded. Moreover

(3.3) IIa(X,D)IIC (1
[nil] +I [nl] +

Theorem ’. Let {pa} e F[1, ] and 0pl. If
(1 + xl)(i"i-ii)"DDa e Li(RnRn)

for lalg[n/2]+ 1, Ilflll[n/2]+2,
then a(X,D) is L-bounded. Moreover

(3 39 a(X, D) C
In
[n/]

2) Compactness. Here we denote by (x, ) the characteristic
function of the set {(x, ) e R" xR";

Theorem 4 (cf. Cordes [3, Theorem E]). Let {p} e F[1, ]. As-
sume DDa e Lii(R xR) and lima_ IIDDalIi=O for lal,
[n/2]+1. Then a(X,D) is a compact operator on L(R").

Theorem . Let {p} e F[1, ] and 0pl. Assume
(1 +ll)(il-I"l)"DDa e L(i(RxR)
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and
lim n(1 +II)(II-I"I)DDalI.I=O

for ll__<[n/2] + 2, Ifll=<[n/2] + 1.
Then a(X, D) is a compact operator on L(R).

Theorem 5’. Let {p} e F[1, ] and 0pl. Assume
(1 + xl)("-)"DDa e L(R R)

and
lim ;((1- for lal=<[n/2] + 1, Ifll=< [n/2] + 2.

Then a(X, D) is a compact operator on L(Rn).
Remark. We note that the following conditions are mutually

equivalent for f e L()(RnXRn) with {p} {p,..., p} e F[1, ].
( ) lim_
(ii) There existf e L,(R XR) (] 1, ..., ) such that f =1f

and lima ZRf, IIL’ 0 (]= 1, ..., g).
(iii) If e {p} (i.e. p,= ), there exist f e L(R xR) (]= 1,

.., g) such that f==f and lima_ IIfll=0
4. Outlines of Proofs. 1) Proof of Theorem 1. A basic tool

is the following identity formulated by Kato [4];

(4.1) (b.g)(X, D)=[[ dxdb(x, )e*e-**g(X, D)e*e-,
RnXRn

where denotes the convolution on RnR.
Lemma 1. Let 1/p+l/q=1, lp. If bL(RXR) and

G Cq(L2(Rn)) the b(G) B(L2(R)), where

JJRnXR

as a strong (improper) integral. The mapping b, Gb{G} has the
following properties.

( ) .1 b{G} % (2)’/ b IlL G
(ii) b 0 and G 0 imply b{G} O.
(iii) I(b{G}u, V)L, I2(Ib {IGI}u, U)L,(Ibl {IG*l}v,

for u, v e L2(R).
Here GO means that G is non-negative self-ad]oint and IGI means
(G*G)/2.

Let , be the unique solution within ’(R) for (1--)’,=, where
s is a real number, J is the Laplacian, and is the delta function. It
is well known that % e C(R{0}),

D@,(x)=0(1 +lxl2’-*-) as lxl0 if 2s--n--lal0,(4.3)
D,(x) decays exponentially as Ixl.

Let g(x,)=%(x)t() with s, t>n/4 then g(X,D) has an extension in
Ct(L2(R)) because of the following lemma.

Lemma 2. Let , e L2(R) and g(x, )=(x)(). If and decay
exponentially as lxl, then g(X,D) has an extension G in C(L2(R))
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(i.e. g(X, D)G e C(L(R)).
Replacing b in (4.1) by (1--z/)(1-z])a and applying Lemma 1,

we can prove Theorem 1. For Theorem 2, it suffices that the assump-
tion implies that of Theorem 1. This assertion is obtained from the
following as in Cordes [3].

Lemma :. For any s0, we can write (1--1)/---(1--1)-(//)
--i=SD, where (1--1)-(/+) and S have the Li-convolution
kernels // and ///x respectively.

2) Proof of Theorem 3. In the same way as Kato [4], we use the
partition of unity {()}; on R such that
(4.4) ID()IC(I+I[)- for Ifl[<=[n/2]+ 1,
(4.5) IIl--k-l<=Ck/- if supp ,
where C is a constant independent of k. Set

a(x, )-.()a(x, ), k-- 1, 2, 3, ..., so that
(4.6)

a(x, )-- , a(x, ), a(X, D)= , a(X, D).

In view of (4.4) and (4.5), there is a constant C independent of k such
that
(4.7)

or la]=<[n/2]/2, I/l__<[n/2]+l. Here .-/1--p>0, Z denotes the
characteristic function of supp ,
(4.8) f.,(x,
From (4.7) and Theorem 2 and the assumption of Theorem 3, we obtain
(4.9) a(X, D)A e C(L(Rn)).

The following lemma which follows from Lemma 3 is equivalent
to Lemma 5.4 in Kato [4], but we need explicit formula for calculation.

Lemma 4. There exist a n/4 + 1/2, rn/4 and non-negative

function [ e L(R) such that [(x) decays exponentially as lxloo and

(4.10) Ib(x, )l<= I! dYkr/(k(x--Y))Z()F(Y’ ) if [n/2] is odd,

dk-r[(lc-r(--))Z()F(x, ) if [n/2] is even,

where
(4.11) b(x, )= (1-- k-rz/)(1-- kzl)a(x, ),
(4.12) F(x ) If..(x )1,

and the constants a, r and the function l do not depend on k but only
on .

With these numbers a, r, we define g(x, ):4x.(kx)4x(k-). Then

(4.13)
g(X, D)cG e C(L(R))

(rom (4.3) and Lemma 2),
(4.14) A--b(G} (rom (4.1) and (4.2)),
(4.15) i(Au, v) r. l _--< (I bl {IGI}u, u)(] b {I G* I}v, v),
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for u, v e L(R’9 (from Lemma i (iii)).
Taking (4.6) into account, we must prove the boundedness of A.
To do this, it is enough to show that b {I GI} and b {I G* I}
converge with respect to the operator norm.

Let {p} ={p, ..., p} e F[1, c]. From the assumption of Theorem
3, each f,(x, ) of (4.8) can be written as

(4.16) f,,(x, )-- , f,,,(x, ), f,, e L’(Rn Rn).
j=l

We put

(4.17) f(x, )-- , If,,,,(x, )[ e L’J(R R)._
[n/ul +

From (4.10) and (4.12), we obtain that

(4.18) (Ibl {IGl}u, u)__<

where

(4.19)

(4.20)

if [n/2] is odd,

if [n/2] is even,

P== dxd dyl(kr(x-y))kny.()f(y, )

(eXe-" IGI e’e-i:u, u),

Q-= dxd &y(k-(--i))k-Z()f(x,
(eXe- IGI eXe-Xu, u).

In the same way we obtain that, P if [n/2] is odd,
(4.189

[Q if [n/2] is even,

where P and Q are defined by replacing IGI by IG* in (4.19) and
(4.20).

In the case p= 1, we can easily obtain that
(4.21) P, P’, Q, Q _<C G [1" IIf II u 2.

In the case p=c, we notice that G and G (k=>2)are unitary
equivalent and that

__
(-k;)2(C+1]1) for , ] e R (equivalent

to Lemma 5.5 in Kato [4]).
Lemma 5 (c. Kato [4, Lemma 4.2]). Let g(x, )=(x)t(). Then

the followings are valid.
i) Dg(X, D), g(X, D)D, D] g(X, D) and g(X, D) DI have exten-

sion in C(L(R)) if sn14+l12, tnl4.
ii) g(X, D)X, Xg(X, D), g(X, D) IXI and IXI g(X, D) have exten-

sion in C(L(R)) if snl4, tnl4+ 1/2.
Using above Lemma 5, we obtain as in Kato [4] that

(4.22) P,P,Q,Q<=C(IIGII+IIGIDI[I/IIIDIGII)IIfIILIlull.
In the case 1 p c, we use the HSlder inequality and obtain that
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for any constant C>0

; dYg(kr(x--y))k’r()f(Y, )

(4.23) (C’/p) .[ dyla(kr(x-y))k’ry.()f(y, )
+(C-q/qJ) dY(kr(x--Y))krZ()’

d(-r(--))k-nrz()f(x, )

(4.239 (C/p) .[ dg(k-r(-))k-r()f(x, )
+(C-q/q) dP(k-’($-))k-rz()"

Using (4.23) and (4.239, we can reduce the estimates of P, P, Q, and
Q in this case to those in the case p 1 and in the case p-. Choos-
ing a suitable constant C, we obtain that
(4.24) P,P,Q,QC(]G]]+]GD]+]D]G)f]u].

Noting the symmetry of roles of (x, X) and (, D), we can
similarly prove Theorem 3’. We can prove as in Cordes [3] that
Theorems 4, 5, and 5’ follow from Theorems 2, 3, and 3’ respectively.
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