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1o Summarising our recent investigations [3] [4] [5], we show here
very briefly a quite simple proof of Gallagher’s prime number theorem
[2 Theorem 7] without appealing to the zero-density theorem of Linnik
type or to the Deuring-Heilbronn phenomenon. Our argument can be
considered to be a penetration of Selberg’s sieve into one of the deepest
areas of the theory of prime numbers. To state the theorem we use
the following convention" If there is an exceptional zero 1--/ of L(s, ),
Z real primitive (mod q), such that/__<(log Q)-, q<=Q, then we put

((x, )-- z(n)A(n)(1 + (n)n-).
Otherwise we delete the factor 1 +(n)n-. Then a slight modification
of Gallagher’s theorem states that

Theorem. There exist effective constants Ao, cl, c.O such that

* IJ/(x+ h, Z)--(x, ;)1__<cl Min (1, 8 log x)he-c,
l<q_Q z(mod q)

whenever Q<=x/Q<=h<=x, Ao<=A.
As is easily seen, this implies Fogels’ prime number theorem [1] and
thus Linnik’s theorem [6; Kap. X]. Our estimations below are very
rough, and in all probabilities a detailed study o our argument will
provide A0, c, c. with airly good explicit values.

2. We may restrict ourselves to the case in which an exceptional
zero does exist. Otherwise the argument o [3] can be used. In what
follows B(n), g(n), G(R), r(n), qr(s) are all defined in [4]. Also we assume
always that r is square-ree and that e is a sufficientry small positive
constant. Constants implied by the Vinogradov and the Landau symbols
are all effective.

Lemma 1. Let

(Gq(R)=

_
g(r), K(q)--q 1--- 1-- ,

(r,q) =1

Then we have Gq(R)>=K(q)-IG(R).
Lemma 2. Let c(n) be arbitrary complex numbers. Then we

have, for any O<N<=M,

E K(q)g(r) ,* )(n)(n)B(n)/c(n)’l
q_Q z(mod q) MnM+ig
r_R

(q,r) =1
1/2 1+< {L(1 + 8, zI)N + O((M R Q ) )} , c(n)

M<n_M+N
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Lemma :. If n c(n)l converges, then we have, for any T>=I,, K(q)g(r) -]* z(n)(n)B(n)l/c(n)nt dt
q-Q (mod q) T
r_R

(q,r) =1

(( {L(1 + 3, zl)n + T(nl/2R3QS) +’} c(n) ]2.
t-----1

Lemma 4. Let F(s, )=--L(s, )L(s+ 3, ), (mod q) non-principal.
Then we have, for Re(s)_>_ 1--c (log qq Isl)-,

F’ (s Z) (( log (qq Is I).
F

To prove Lemma 2 we consider the dual 2orm, B(n) , (K(q)g(r))/2 * z(n)(n)b(z, r)l2,
M<n_M+N qQ z(mod q)

(r,q) =1

where b(, r) are arbitrary complex numbers. Expanding out, we
encounter sums o the sort

S(;, Z’; r, r’)= 2’,(n)B(n),
M,n_M+N

where 2’,(n)--z(n)z’(n)(n),(n) and ; (mod q), ;’ (mod q’), (q, r)
--(q’, r’)--1. So we are led to the unction, Z2’,(n)B(n)n-=L(s, ZT()L(s +3, ;2’Zl)Ar,r,(s,

where the explicit orm A,,(s, Z2’) can easily be obtained by expressing
the let side in an Euler product. And we see that the residue o the
right side at s 1 is E(Z, Z’ r, r’)L(1 + 3, Zl)(K(q)g(r))- where E(;, Z’ r, r’)
is 1 i (Z,r)=(z’,r’), and =0 otherwise. So we have, by the routine
complex integration method,

S(Z, Z’; r, r’)=E(z, Z’; r, r’)L(1 +3, y.)(K(q)g(r))-N +O((M/2RQ3)I+9.
This gives the assertion of the lemma. Then Lemma 3 can be immedi-
ately obtained by Gallagher’s mean value theorem [2; Theorem 1].
Lemmas 1 and 4 are easy.

:. Now we put
U(s, )= (1--F(s, Z)r(s, y.)g(r)-),

where in the definition [4 Lemma 3] o (s, Z) we use o [4 Lemma
4]. Then by the amiliar argument we have, or non-principal Z (mod q),

((x+h, y)-(k(x, 7.) 1 f/r_(s, ;)U(s, )((x+ h)--xgs-ds
2i

+ O(xl/2(rzQ2T) / + T-(r2x) +},
where =1--c (log QT)-. Multiplying by K(q)g(r) both sides and sum-
ming over r<=Q, z primitive (mod q), q<=Q, (q, r)-l, we have

G(G) , ,* 15z(x+ h, )-5/(x,
q-Q (mod q)

(( h (log GT) exp -(- clog_____x)i(])- -t- xl/2(zQT)+ -- T-I(xG’) +log QT /\
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where we have used Lemmas I and 4, and also we have put

I(a)-- , K(q)g(r) ,* f/irlUr(s,)llds I.
q,r_Q z(mod q) d a-iT
(q,r) =1

Then we have, by [4; Lemma 3] and Lemma 3 above,

I(D(( , B(n) {L(1 +, xl)n + T(nl/2QT)+’}n-2,
n_z

where =l+(logQT)-1. So, i we put z=(TQ5)+’, we get I()
((L(1 +, ;), since we have [4 Lemma 4] and B(n)<=r(n). On the other

hand we see easily that I()(((zQ6T2)+. Hence by the convexity

argument [6; p. 404] we find I(])((L(1 +/, ). That is, we have, by
the second assertion o [5; Lemma 4],, ,* I(x+h, z)-(x, ;)l

q_Q z(mod q)

((h (log QT) exp -(-clogx- + (xl/Q.IT3)+4o+ T-(xQ4)+.
log QT ]

And taking T=Qx, we end our brief proo of the theorem.
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