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1. Introduction. We shall investigate the energy decay of the
solutions to the following Cauchy problem;

L(u)--utt-lu+a(x, t)u---0, x e Rn, t_>0,( 1
[u(x, 0) =(x) e C, u,(x, 0)= +(x) e C,

where a(x, t) e . *), a(x, t)>_0 and A=Laplacian in R. Rauch and
Taylor [3] showed that, if a(x, t)a(x) and a(x) has compact support,
the energy E(t) defined by

E(t)=.[_ u(t)+]u(t) dx ( gradient in R")

for the solutions of (1) does not decay as t goes to infinity. More gen-
erally, Mochizuki [2] showed that, if 0g a(x, t)g c(1 +]x)-’- for some
positive constants c and (n2), E(t)O as t+. On the other
hand, we have from the usual energy estimates that if a(x, t)2Const.
0 and at(X, t)O, E(t) decays like 0(t-’). In this paper we give more
general conditions which guarantee the decay of E(t) and an application
to the nonlinear wave equations. Now, letting m be a positive con-
stant, we list up the assumptions"

(A-l) There exist some positive constants r, K and such that
supp (x) supp (x) (x e Rn xr},
min a(x, t)2(K+et) -1 for all t0,

xlmt+r

max at(x,t)gs(2+6+3)(2+)-(K+t)- for all t20
xlKmt+r

where r=(3--2+ -4+4)/2.
(A-2) a(x, t) belongs to + (k= 1, 2, .) and satisfies

max a(x, t) Const.(1 + t)- for all t 20.

(A-3) a(x, t) (K+ t)-1 for some positive constants K and e.

Then we have the following

Theorem 1. Suppose (A-l) with m= 1. Then the energy E(t) for
the solutions o/(1) decays like O(t-/(+’). Furthermore suppose (A-2)
(resp. (A-3)) with m= 1. Then the solutions of (1) satisfy

*) is the set of all functions defined on Rn([O,-Foo) such that all their
partial derivatives of order _<k exist and are continuous and bounded.
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resp. <: Const.(1 + t)-/(’+") for >2-
<: Const. (1 + t)-/(1+ ) for

where is any fixed positive number and I1" 11 denotes the usual Ht(R)
norm.

As one of the applications to the quasilinear strictly hyperbolic
equations, we consider the following Cauchy problem;

u-(l+a(u,))u,,+a(x,t)u=O, xeR, tO,2
u(x, 0)=(x) e C, u(x, 0)=(x) e C,

where a,(v) belongs to C(R) and satisfies that for k20 and r e R

(d) r, .0) (q0).

For the strict hyperbolicity of (2), see (8) and (9) below.
If a(x, t) a(x) Const. > 0, our arguments in [1] with a slight

modification are applicable to (2). Now putting s=[(n/2)]+2 and
=ll]],+,+]]l],, we have the following

Theorem 2. Suppose (A-l) and (A-2) (resp. (A-3)) with m=2
and k=s. Moreover suppose q,2++O (resp. q,2e+O if
q,l+8 if g2-) (lgiKn) for some positive constant O. Then there
exists a positive constant o such that (2) has a unique C-global solution
for 0<vg, and E(t) decays like O(t-*/(*+r**)) (resp. 0(t-*/(’+*)) for
e>2-’, O(t-/(+)) for

Proof of Theorem 1. Putting v =(1 +t)u (>0, p>0), we2
have

L(v) (1 +t)L((1 +6t)-v)
--v-Av+A(t)v=O

where
A(t)v--(a-2p(1 + t)-l)vt + p(1 + t)-I((p + 1)(1 + t)--a)v.

Calculating
d B(v)dx

we have
B(v) v+IVy ] + 2(1 +t)-vvt

+ (1 + t)-{(2--p)a+ (1+t)-(p(p + 1) +(1 2p))}v,
C(v)=(a-(2p+ 2)(1 + t)-iv+(1+t)-1 [V

+P(P+ 1))}v +2-(1 + 6t)-(6p )a,v.
In the above equalities, we choose , and p as

p=2(2+)-, 6=K-, K-=(22+36)(2+)-+a
where a is a fixed nonnegative number. Then we note p-=2+ +0()
where r is as in (A-l). Now, noting that v(x, t) is supported in

+ t, we have from (A-2) that for ]xg r+ t
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(3)

(4)

So we got the first part of Theorem I easily from (3) and (4) with a=0.
For the proof of the second part, let o be any fixed positive number.
Putting (O/Ot)v=v and (O/Ot)A(t)=A(t) (i_>0), we have

L(v)-L(vg+ , (})A(t)v- (i21).
j=l

Now it follows from (A-2) that for 0>0 and C(O) (constants)

(= (.)A

(5 )kj=l

Le (0NiN) be a osiive constant. hen, from (4) and (g), here
exists some positive eonsan

).0--,=o L(v) (v+ + 2(1+ 3t)-v)dx

U(v)dx +
=o
c(1 +3t)- Iv+tl dx

+

g=l

+ (l+3t)- (c 0)fl, flC(8)ivt+iledx
i=o j=i+

Now we choose 0 and as

e-O>O, (e-0)&- (0)>0 for 0<i<-1.
j=i+l

Thus we have

(6) dtd (,__o fl, B(vgdx)<_O.
Hence the second part of Theorem 1 follows from (3), (6) and the esti-

mates for

for O<m+j<k 1Ilzlv I1 IIv+/E (,)A (t)v - I1
i=0

Finally, for (A-3), we can give a proof in the same way as above by
choosing =eK-x, a--a and p---(2e+O)- for e2-, p=(l+0)- for
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3. Proof of Theorem 2. Putting v--(l+t)Pu, we may consider
the next Cauchy problem;

L(v) vtt- ,i\1 (1 + a((1 + t)-Pvx,)vx,x, + A(t)v =0,( 7
iv(0) =. v.(0)

First we choose a positive constant Z so that for any t0 and 1 <i<n
( 8 sup la((1

For the proof it suffices to show the following a-priori estimates" There
exist the positive constants Z0 and 0(<1) such that if v(x, t) satisfies
(7) for 0E tE T (any fixed positive number) and

llv+l(t) IIo+ lilY’(t) II_lZ(9)
v()IIo(1+),

then v(x, t) satisfies

(lO) v+ 1()Io + Fv()I1- o,
i=0

v()II0z0(l+)
for 0<ZgZo and 0<VVo(Z) where v0(Z) denotes some positive constant
depending only on Z and where flo and Zo are independent of T. We
note that v(x, t) is supported in Ix g r+ 2t from (8) for this case. Then
under the assumptions above, choosing fl()0) similarly as before,
there exist the positive constants Cl and c such that

O= fl L(v) (vTM + 2(1 + t)-v)dx
i=O

d

(11)

+ c.( + t)-’(ll v"+’ + Fvl+ (+t)- v I)
i=O

i=O

where

(12) D(w)=B(w)+ , a.((1 +at)-’v.) Iw.l=.
i=l

On the other hand, estimating

(l+ai)vx,x, v+ ()v-[ O
x,=,} .+E ()A (t)v -’

i= i= k= i=

for Ogm+]Es--1,
we have

(13) ,=0 Fv’ I-E Cnst" (([ v"+ll +=0 IFv + (1 + 3t)-’

So (11) and (13) give
d ( fD(vgdx)O or 0<0.(14)
dt

Thus (3), (8), (12), (13) and (14) imply a-priori estimates (10). For more
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detailed arguments, refer to [1] (Lemma 4 for the estimates of the com-
posite functions and Theorem 2 for the global existence).
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