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42. Studies on Holonomic Quantum Fields. III

By Mikio SAT0, Tetsuji MIWA, and Michio JIMBO
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by K.Ssaku YOSIDA, M. $.A., Oct. 12, 1977)

In this note we report along with [1] the work presented in [2].
Further results along the present line will be given in subsequent
papers.

We ollow the sme notations as in [1] and [3] unless otherwise
stated. In this article, along with the 2-dimensional space-time
(=Minkowski 2-space)and its complexification, to be denoted by X
and Xc respectively, we also deal with the Euclidean 2-space X con-
sisting of complex Minkowski 2-vectors x e X such that x (= --ix) e iR
and x R, i.e. such that x (=(x+x)/2) are complex conjugate
to each other; we have z=--x-, =x+, 3=/3z and =3/3.

1. Let W be an orthogonal vector space, and W=VV be its de-
composition into two holonomic subspaces with basis () and (,) as
in 2 [3]. V (resp. V) generates maximal left (resp. right) ideal A(W)V
(resp. VtA(W)) of the Clifford algebra A(W). The quotient modules
A(W)/A(W)V and A(W)/V*A(W) are generated by the residue class o
1 modulo A(W)V resp. V*A(W) (which we shall denote by [vac} and
(vac[ respectively after physicists’ notation) and coincide with A(V)
vac and (vac A(V) since we have V vac=0 and (vac V*=O. Other-
wise stated, they are respectively spanned by elements o the orm,, ..., , ,... [vac and (,, ..., , (vac ,..., n=O, 1, 2,
.., and indeed these elements constitute mutually dual basis o both

spaces (Z, ", Z [,, ", ,}=0 if men, =det (,) i m=n.
Let g be an element o the Clifford group G(W). The rotation in

Winduced by g, Tq: wgwg-, is even or odd (i.e. det Tq= + 1 or --1)
according as corank Tt=even or odd; in particular for a generic
even/odd g e G(W) we have corank T=0/1 and expression (3)/(4) in
[3] or N(g). An element w e W itself belongs to G(W) i and only if
(w, w}0, in which case we have wg e G(W). First consider an even
generic g, so that we have, with the abbreviation (g} (vac[ g [vac},

tS=S, tS=-S, S=-S
where S=(: :)is relaed o T=(: :) hrough he reci,roeal

formulas
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(22)
Tq__(1 -.)(S S.1)(1S 1)"

Then we have, letting w-(kgo) e

(23) N(wg)--(gwe,
(24) N(gw)--(gwe’,

(c*+Sc)w=(*)\ Sc

+Sc*]
For an odd generic g’ (so that N(g’)=Woe with w0 e W), the composition
wg’ or gw gives an even one, and

1(25) N(wg’) (WWo}e’’, L L+wAWo,

1(26) N(g’w)--(wow}er, L=L+.wo/w,

where w and w are given by (23) and (24) respectively, using S=Sq,
N(g)=e.

It should be noted also that Tq and Tq, commute if and only if g, g’
e G(W) either commute or anticommute.

Applying the above formulas to the case w=(x) and L=L(a),
we have, for w in (23) and (25),

d(- )e--"**-(),(27)

where
(x; u)=/O+iue-(-//-’)

+: du,/O+ iu,-e_,_,/x/,_, i(u+u’)
u--u’--iO

Then =(+_)is analytically continued to the complex region of x such

that Im x 0, satisfies the Dirac equation 3+/-+/- _+m there, and
shows a strict Fermi-type behavior at x=0 in the Euclidean region.
Indeed we have

(28)
(x; u)--(Wo(--x-,x+)+Wo*(--x-,x+))

+o ((iu)w(-x x/) + (iu)-w*(-x x/)).
Combining (23)(28) we obtain the ollowing operator expansions or
4x(x).(a) and (x)oY(a)

N(4x(x)(a)) =$(a)(Wo[a] + w0* [a])
(29)

+7= ([(a)w[a] +(a)w*[a]),

(30)
N((x)"(a)) e r’(")/2(w0[a] w0* [a])
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+o (e,(a)w[a] +,_(a)w*[a]),
where

(a) (a)eL, ,,(a) (a)o(a)e(,
(31) (a)=[+ d(iu)e-(-++-’)(u) (1 e Z).

Here w[a] denotes w(--x- +a-, x+-a+) and similarly for w[a]. Since
the norm is linear,

N()=dN(9y)=dL.e and N(d)=(do+odL)e.
Noting the relations dLr(a)=(--i(a)d(--a-) +i_(a)da+)o(a) and
d(a)=+(a)md(--a-) +_(a)mda+, we obtain
(32) N((a)) -i,(a)md(--a-) +i,_(a)mda+,
(33) N((a))=f(a)md(--a-) +{(a)mda+.

Finally we give the commutation relations satisfied by our field
operators when placed in mutually space-like positions.

First, the above mentioned act that g and g’ e G(W) either com-
mute or anti-commute if Tq and Tq, commute, together with the Lorentz
covariance of and , yields micro-causality for and "(34) (x)(x’) (x’)(x), (x)(x’) (x’)(x),

for (x’-- x) O.
Of course, @ satisfies
(35) @(x)@(x’) --@(x’)@(x), for (x’-- x) O,
or more precisely

([+(x), @+(x’)]+ [@+(x), @_(x’)]+
(36)

k[@_(x),@+(x’)]+ [@_(x), @_(x’)]+

+/
where

0 <0.
On he oher hand, he definition (6) in [8] o reads" T((’))

=(’) if (z’--)<0 and ’-zN0 (i.e. if ’+z+ and ’-N-),
while p is defined by T(((’))= N(’) wih he same and ’.
hese definitions are readily rewritten as follows"

(7) (z)(’) (’)()’
()(’)=(’)(), or ’**, z’-N-.

(4) and (7), when combined wih (29) and (0), now yield
(gS) p()(’)= f(’)f() or ’**, ’- N-.

Z. We now roeeed o construction o the wave functions of
W in terms of our field oeraors p,p and . Le ,... z,I**"
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WF, n(X, ", X al, ", an)
(vacl ’lf(Xl) ’lf(Xk):).F(’l) Dz(art) ]vac

1’"

’ ) to be a similar expres-(where {,, ...,,}=(,;, ...,,} and ,
sion as above, with r(a)within the bracket being replaced by (a)
for ,=,, ...,,. If k-0, our wy:"’, should also be denoted by
r7,",(a, ., a), since or m=O (resp. re=n) it reduces to the n-point
:-unction of (resp. ) discussed in [3]. We oten drop parameters
a, ..., a and denote them by w:"’(x, x) and rT:"’’. Also we
use

:" ,(x, x) ,"’,(x x)/WF,n TF,n
and

:"’:v:’"/V,n
Note that all these quantities represent 0 if k+m is odd.

From (29), (30) and (37) it follows that our wave unctions admit the
local expansion of the form (3) with lo=O at each o a, ..., a, i.e. o
the ollowing form in the style of (10)"
(39) :",(x) =o c(:"’)w[A] +=0 e(:’")w[A],
and that the coefficients e(@7:;"’’) in this expansion are expressed in
terms of r-functions. Namely assuming ,<... <, and (a--a,) + >0
for ,>,’, the z-th component of Co(:"’’) is

(( /9,"’,,z,+,’", <(40) (_)((,...,,_)(,...,))/,,, if , Z ,+,
/(/Ovx,"’,-,v+x," ,vm

while from (32) and (33)
(,c(:",))

(-

(r,.e,(Wp:",)).
(41) = "m-O_
We note ha (8g) ogeher wih ositive-definieness o he inner

rodue in w, yields several inequalities among Nuelidean r-al,’"an

functions.
The analytic prolongability of the vacuum expectation (vacl. }vac>

(or of any matrix element) of product of field operators in their argu-
ments is well-known. Indeed, consider (vacl (x)r(a)Ivac or ex-
ample, and expand it into

1

X""(0)Ivae) e-((---++-*’

wih U=t+. + and U’=f+. +, and we shall see tha his
quaniy is analytically rolonged o he eomplex region of and e
satisfying Im (--)<0. (Noeha no role is layed by he aeei-
denal fae ha vael (0)I...)=0 for 1.) he same reasoning



No. 5] Holonomic Quantum Fields. III 157

yields that our wave function w,,j’,’(x, ..., x), as the vacuum expec-
tation of the product #(x)...(x)(a)...(a,), with standing either
for or for 0, admits an analytic prolongation to the region y/,c

of complexified arguments x, ., x, a, ., a defined as follows:
Y’C={(x, ..., x) e (XC) Im xIm x for ’},

where (XC) stands or the Cartesian product of n copies of Xc, the
complexified space-time. We also set Y,=y,c (Xo). Note that
they are convex cones in (XC) resp. in (X), and hence simply con-
nected. From the above reasoning we lso see that for a, .., a fixed
and Im x +/- tending to --c, the wave function w:i",’(x) tends to 0 ex-
ponentially.

The commutation relation (37) between (x) and (a) implies that,
if (x--a)=4(x/ --a/)(x---a-) 0,

(vacl. +(x)Aa)... vac} (x/ a/)(vacl. Aa)+(x)... vac}
and

(vac I. (x)(a) vac} (x- a-)(vacl... (a)(x)...
Since

(vacl...+(x)(a)...Ivac} and @acl...(a)+(x)...]vac
are already known to be analytically prolonged to Im (x+/---a)O and
to Im (x+/--a+/-)O respectively, the above equalities imply that our
wT:j"(x, .,x), when prolonged to y+,c and then restricted to
Y/’,, is analytically prolongable in both ways, but with opposite
signs, around each {x,=a}.

The commutation relation (38) between ? and have exactly
the same effect as above, while those within ’s, ’s and ’s have
even simpler consequences on the property o our wave unctions:
analytic prolongability with no discrepancy of sign around each {x,= x,}
etc. Summing up, we conclude that Euclidean w",(x, .,x),
originally defined in Y/,’, is analytically prolongable to a double-
valued unction (whose 2 values differring only in signs) on the whole
(X’)+n with its singularities appearing only along (x=x,,}, {a=a,},
and {x,=a} with , ’=1,..., k and ,, ,’=1,..., n, where the last ones
and part o the second correspond to branch points.

The (Euclidean) wave 2unction wT:i",’(x), with its parameters
a,..., a being distinct and fixed in X, is now a double-valued ana-
lytic unction in X’--{a,...,a}. Notice that the local expansion
ormula (39) does also imply the double-valued nature of our wave
function around each a in fact it implies an even stronger fact that
w:j’,’(x) is of strict Fermi-type at each a. We already know that
w:i",’(x) tends to 0 exponentially at infinity in X. We can show
urther, by employing (13) and (14) in [3], that w,,j’,’(x) is real. We
now conclude that our w:i,",’(x) belongs to wto,
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