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42. Studies on Holonomic Quantum Fields. III

By Mikio SATo0, Tetsuji Miwa, and Michio JIMBO
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by Koésaku YosIpA, M. J. A., Oct. 12, 1977)

In this note we report along with [1] the work presented in [2].
Further results along the present line will be given in subsequent
papers.

We follow the same notations as in [1] and [3] unless otherwise
stated. In this article, along with the 2-dimensional space-time
(=Minkowski 2-space) and its complexification, to be denoted by Xt»
and X°¢ respectively, we also deal with the Euclidean 2-space X con-
sisting of complex Minkowski 2-vectors x ¢ X¢ such that #° (= —ixz? € iR
and 2' € R, i.e. such that Fz* (=(Fz'+2"/2) are complex conjugate
to each other; we have 2= —2~, z2=2x"%, 9,=0/02 and 9,=0/0%.

1. Let W be an orthogonal vector space, and W=V'@®V be its de-
composition into two holonomic subspaces with basis (y!) and (y,) as
in §2[38]. V (resp. V') generates maximal left (resp. right) ideal A(W)V
(resp. VIA(W)) of the Clifford algebra A(W). The quotient modules
AW)]A(W)V and A(W)]/VIA(W) are generated by the residue class of
1 modulo A(W)V resp. VIA(W) (which we shall denote by |vac)> and
{vac| respectively after physicists’ notation) and coincide with A(V?)
|vac) and <{vac| A(V) since we have V |vac)=0 and {vac| V'=0. Other-
wise stated, they are respectively spanned by elements of the form

[as + =y vp =Pl ol [vae) and Qyy, - - -, v0| = vace| 4y, - - o4, #=0,1,2,
.-+, and indeed these elements constitute mutually dual basis of both
spaces: {fy, ** *y | Vs -+ -, v =0 if m#£n, =det (4,,,) if m=n.

Let g be an element of the Clifford group G(W). The rotation in
W induced by g, T, : w—gwg™, is even or odd (i.e. det T,= +1 or —1)
according as corank T,=even or odd; in particular for a generic
even/odd g € G(W) we have corank T,=0/1 and expression (3)/(4) in
[3] for N(g9). An element w e W itself belongs to G(W) if and only if
{w,w)=#0, in which case we have wg € G(W). First consider an even
generic g, so that we have, with the abbreviation {g> (§<vac| g|vac),

_ L _ 1.4 (Sl—l S, )( " )
Ngy=<goe*s  L=50") s, s\

tS1=S4’ ‘S2= _Sz, tS3= —Ss

where S =<S ! SZ) is related to T =(T1 TZ) through the reciprocal
T\S; S, oTN\T, T

4,

21

formulas
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S=( T 1), 4)
= ) sl )

Then we have, letting w=(«lr*«lr)<f),

(22)

@3) N(wg)={g>w,e*, w1=(«w\w("*§ f")
24) Ngw=<opuwes,  w=ar( D¢ ).

For an odd generic ¢’ (so that N(¢’) =w.e* with w, ¢ W), the composition
wg’ or g’w gives an even one, and

25) Nwg)={wwye™,  Li=L+—L _w Aw,
{wwyy

(26) N(@'w)=<{ww)e™, L,=L+ Wo/A\Wa,
{woaw)

where w, and w, are given by (23) and (24) respectively, using S=S,,
N(g)=er.

It should be noted also that T', and T,, commute if and only if g, ¢’
e G(W) either commute or anticommute.

Applying the above formulas to the case w=n.(x) and L=_Lgy(a),
we have, for w, in (23) and (25),

+ oo

4] wy=| duf.(x—a;u)e meTHraTETY(y),

where
§=(x : ’I,L) ¢0+iuile—im(x“u+x+u—1)

+J du’x/O—l—zu’ile‘m(” weatur-n  HUFU)
u—uw' —30

Then S:(‘g*) is analytically continued to the complex region of x such

that Im x* <0, satisfies the Dirac equation 9,:&,=+mé¢. there, and
shows a strict Fermi-type behavior at =0 in the Euclidean region.
Indeed we have

8@ 0)= (a7, 2%) + i (—a, &)

+ 20 (Eww,(—a~, ) + ()~ wF (—x~, 1),
Combining (23) ~(28) we obtain the following operator expansions for
Y (@)r(a) and y(x)p" (@) :

NG @)er(@)) =¢0F<a>-;-<wo[a1 +wila))
+ 2 (@F(@w fal + " (wial),
N(«Ir(w)goF(a))=6LF‘“’%(wo[a]—ws"[a])

(23)

(29)

(30)
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+ 251 (o (@w [a] + ¢p, _(@)wial),
where

ol @=v,(@e* @,  op (@)=1 (@) (a)elr,
v@={"" dutuye-meseriyw) (e z).

—o0

(D

Here w;[a] denotes w,(—x~+a~, 2* —a*) and similarly for w¥[a]. Since
the norm is linear,

N(dgs)=dN(pp)=dLy-¢'* and N(dg")=(dy+vndLr)err.
Noting the relations dLz(@)=(—iy(@)d(—a~)+iy_(@)da*)y,(a) and
(@) =1 (@)md(—a™) + 4, (@)mda*, we obtain
(32) N(dop(@))= —ipp,()md(—a7) +ipr, [(@)mda*,

(33) N(dp" (@) =g¢f(@)md(—a") + ¢l (e)mda*.

Finally we give the commutation relations satisfied by our field
operators when placed in mutually space-like positions.

First, the above mentioned fact that ¢ and ¢’ € G(W) either com-
mute or anti-commute if T, and T,, commute, together with the Lorentz
covariance of ¢y and ¢¥, yields micro-causality for ¢ and ¢ :

34) or(®)pr(x’) =p(x )pp(2), " ()" (2) =" (@)p" (2),
for (2’ —2)?<0.
Of course, + satisfies
(35) Y@ (@) = — (2 (2), for (' —2)*<0,
or more precisely
([«Iu(x), v (@], .2, «lr_(x')L)
[ (@), ¥ (@], [p_(@), y_(@)],

(36)
=m-1( 0p- M )A(x—x’; m?)
—m 3;c+
where
. — - —im@=u+atu—1) __ 5(xo)J (m'\/éé) >0

On the other hand, the definition (6) in [3] of ¢y reads: T\, ., (v (x'))
=a4p@) if (@ —2)?<0 and 2"'—2's0 (l.e. if #’*=2* and ¥/~szx"),
while ¢” is defined by T re (@)= Fy(2’) with the same « and «’.
These definitions are readily rewritten as follows:

@7 or(@P (@) = £ (@ )er(2),

" @ (@) =Fy@)ef (@),  for a'*=z*, ¥~ s,
(34) and (37), when combined with (29) and (30), now yield
(3%) or(@)p" (@)= £ " (@)pp(®)  for '*=x*, 2" s,

2. We now proceed to construction of the wave functions of
Wit . in terms of our field operators ¢z, ¢ and . Let @, - - -, 4,
ay, - -+, 0, be k4+n Minkowski 2-vectors in mutually space-like positions.

@y -+, 24304 -+ +,0a,), for any ordered subset (v, ---,v,) of indices
{1, ---,n}, as follows. Namely, if m=0 we define
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wF,n(xv sy Ly Uy ot "an)
={vac| (@) - Y@ er(a) - - - or(a,) |vac)

and in general, we define sgn (’;}’ N "”f)w;!;,;"’”m(xl, e Ry Oy ey Q)

15 ** * 9 Yn,

(where {v,, - - -, v, }={1, - - -, o} and [ <. - - <) to be a similar expres-
sion as above, with ¢z(e,) within the bracket being replaced by ¢”(a,)
for v=y;, -+-,v,. If k=0, our wy,  should also be denoted by
™Ay, - - -, @), since for m=0 (resp. m=mn) it reduces to the n-point
z-function of ¢ (resp. ¢*) discussed in [3]. We often drop parameters
ay, -+, 0, and denote them by wi, »=(x,, - - -, x;) and ;"= Also we
use

w}‘,’;"’""‘(xu ttty xk)zw;},’r;”’vm(xl’ ttty xlc)/TF,m
and

T =T T, e

Note that all these quantities represent 0 if £+ m is odd.

From (29), (80) and (37) it follows that our wave functions admit the
local expansion of the form (8) with [,=0 at each of a,, ---,a,, i.e. of
the following form in the style of (10):

(89) (@) ~ Yo e Wi Al + i, o (o »mwi AL,

and that the coefficients ¢,(#%;,*) in this expansion are expressed in

terms of z-functions. Namely assuming »,<...<y, and (a,—a,)*>0

for v>/, the p-th component of ¢ (w3, ™) is

(40) ('*-)*({1,~~~,#—1m{ul,...,mﬁ{(1/2)6?,’;»‘"vk’”’"k“’m’m if vy <p v,
(T]2) 25, =t 1o ovm if vy=p,

while from (32) and (33)

(41) M0 _or ), .
=2 - Wep,ne € (Wi ™).
m_la(—a;)
We note that (85) together with positive-definiteness of the inner

functions.

The analytic prolongability of the vacuum expectation {vac|- - -|vac)
(or of any matrix element) of product of field operators in their argu-
ments is well-known. Indeed, consider <{vac|(x)o”(a)|vac) for ex-
ample, and expand it into

Z?lo—ll!’ I: : _[: au, - - - duy <vae| ¥(0) |uy - - -uy)

% <u1, . ‘“l‘ gDF(O) |Vac> e im(@=—a=)U+@+-a+)U")
with U=u,+ .- +u, and U’ =u'+ . - - +u4;%, and we shall see that this
quantity is analytically prolonged to the complex region of x and a
satisfying Im (x* —a*)<0. (Note that no role is played by the acci-
dental fact that {(vac|y(0) |;- - -%,>=0 for 1s1.) The same reasoning
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vields that our wave function wy; »~(x,, - - -, x;), as the vacuum expec-
tation of the product v(x)- - - ¥ (z)p(@,) - - -p(a,), with ¢ standing either
for ¢z or for ¢¥, admits an analytic prolongation to the region Y**»:¢
of complexified arguments x,, - - -, ®;, @, - - -, &, defined as follows:
Yl={(x,, ---,2,) € (X" |Im 2z <Im 2% for v<y},

where (X stands for the Cartesian product of » copies of X¢, the
complexified space-time. We also set Y EFwe=Y=C¢N (X®)», Note that
they are convex cones in (X% resp. in (X*°)”, and hence simply con-
nected. From the above reasoning we also see that fora,, - - -, a, fixed

ponentially.

The commutation relation (37) between (x) and ¢(a) implies that,
if (x—a)=4(x*—a*)(xz~—a") <0,

{vael: - - Pp(@)pp(@) - - | vacy =e(@* —a*)vac|- - - pp(@)y(x)- - - |vac)
and

{vae: - p(@)ef(@) - - -|vae) =e(x~ —a)vac|: - - " (@) (x)- - -|vac).
Since

{vacel- - - p(@e(@)- - -|lvacy and <(vac|---p(@)y(x)- - -|vac)
are already known to be analytically prolonged to Im (2* —a*)<<0 and
to Im (x*—a*)>0 respectively, the above equalities imply that our
wiy (g, - -+, %), when prolonged to Y*+*™¢ and then restricted to
Y*+mEuwe g analytically prolongable in both ways, but with opposite
signs, around each {z,=a,}.

The commutation relation (38) between ¢y and ¢” have exactly
the same effect as above, while those within v’s, ¢z’s and ¢™’s have
even simpler consequences on the property of our wave functions:
analytic prolongability with no discrepancy of sign around each {z,=x,.}
etc. Summing up, we conclude that Euclidean wy:, »(x,, - -, ),
originally defined in Y**™»®e° ig analytically prolongable to a double-
valued function (whose 2 values differring only in signs) on the whole
(XEe)k+n with its singularities appearing only along {x,=x.}, {0,=a,},
and {x,=a,} with ¢,#'=1, -- ., k and v, =1, . . -, n, where the last ones
and part of the second correspond to branch points.

The (Euclidean) wave function wy:, *~(x), with its parameters
ay, -+ -, 0, being distinct and fixed in X®, is now a double-valued ana-
lytic function in X*°—{q,, ---,a,}. Notice that the local expansion
formula (39) does also imply the double-valued nature of our wave
function around each a,; in fact it implies an even stronger fact that
wi (%) is of strict Fermi-type at each a,, We already know that
wiky*»(x) tends to 0 exponentially at infinity in X®™°. We can show
further, by employing (13) and (14) in [3], that w3, *~(x) is real. We
now conclude that our w:,*~(x) belongs to Wit E |
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