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On countability of Teichmüller modular groups for analytically infinite

Riemann surfaces defined by generalized Cantor sets
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Abstract: For any analytically finite Riemann surface, the Teichmüller modular group
is countable, but it is not easy to find an analytically infinite Riemann surface for which the
Teichmüller modular group is countable. In this paper, we determine whether the Teichmüller
modular group is countable or uncountable for some analytically infinite Riemann surfaces defined
by generalized Cantor sets.
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Cantor set.

1. Introduction.
1.1. Terminology of Riemann surfaces.

We call a Riemann surface X hyperbolic if X is rep-
resented by a quotient space D/Γ of the unit disk D
by a torsion-free Fuchsian group Γ. In this paper,
any Riemann surface is supposed to be hyperbolic.
A Riemann surface X is of analytically finite type if
X is obtained from a compact surface by removing
at most finitely many points, and X is of analytically
infinite type if X is not of analytically finite type. On
the other hand, a Riemann surface X is of topologi-
cally finite type if the fundamental group π1(X) ∼= Γ
is finitely generated, and X is of topologically infinite
type if X is not of topologically finite type. Also, a
Fuchsian group Γ is of the first kind if the limit set
of Γ coincides with the unit circle: Λ(Γ) = ∂D, and
Γ is of the second kind if Λ(Γ) � ∂D. Now, a Fuch-
sian group Γ acts properly discontinuously on D \
Λ(Γ), so if Γ is of the second kind, then we obtain a
bordered Riemann surface (D \ Λ(Γ))/Γ containing
X as its interior. We refer to (∂D \ Λ(Γ))/Γ as the
boundary at infinity of X and write it as ∂∞X.

1.2. Teichmüller space and its Teich-
müller modular group. For a Riemann surface
X, the Teichmüller space T (X) is the set of Teich-
müller equivalence classes of quasiconformal map-
pings f of X onto another Riemann surface, where
two quasiconformal mappings f1 and f2 are Teich-
müller equivalent if there exists a conformal mapping
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h : f1(X) → f2(X) such that f−1
2 ◦ h ◦ f1 : X → X

is homotopic to the identity. If ∂∞X �= ∅, the ho-
motopy is considered to be relative to ∂∞X (:= rel.
∂∞X), that is, the homotopy fixes points of ∂∞X.
We write the Teichmüller equivalence class of f as
[f ]. It is known that T (X) has a complex Banach
manifold structure, and if X is of analytically finite
type, then dimT (X) < ∞; otherwise dim T (X) =
∞. On T (X), a distance between two points [f1]
and [f2] is defined by dT ([f1], [f2]) = inff log K(f),
where the infimum is taken over all quasiconformal
mappings from f1(X) to f2(X) homotopic to f2◦f−1

1

(rel. ∂∞X if ∂∞X �= ∅), and K(f) is the maximal
dilatation of f . This is a complete distance on T (X)
and is called the Teichmüller distance.

For a Riemann surface X, the quasiconformal
mapping class group MCG(X) is defined as the
group of all homotopy classes [g] of quasiconformal
automorphisms g of X (rel. ∂∞X if ∂∞X �= ∅). For
each [g] ∈ MCG(X), we define the transformation
[g]∗ of T (X) as [f ] 	→ [f ◦ g−1]. Then MCG(X)
acts on T (X) isometrically with respect to dT . Now,
let Aut(T (X)) be the group of all isometric biholo-
morphic automorphisms of T (X). We consider the
homomorphism ι : MCG(X) → Aut(T (X)) defined
by [g] 	→ [g]∗ and define the Teichmüller modular
group for X, which is denoted by Mod(X), as the
image Im ι ⊂ Aut(T (X)) of ι. Except for a few
low-dimensional Teichmüller spaces, the homomor-
phism ι is injective (cf. [2], [9]) and surjective (cf.
[6]). Therefore, in this paper, we identify the quasi-
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conformal mapping class group with the Teichmüller
modular group.

In section 3, we think a bit about the reduced
Teichmüller modular group Mod�(X) for a bordered
Riemann surface X. This is the quotient group
of Mod(X) by free homotopy equivalence, that is,
the homotopy does not necessarily fix points of the
boundary of X.

1.3. Some Riemann surfaces of topolog-
ically infinite type and Teichmüller modular
groups for them. In 2003, Shiga [10] considered
two distances on the Teichmüller space T (X); the
Teichmüller distance dT and the length spectrum
distance dL. By the definition, the Teichmüller dis-
tance dT ([f1], [f2]) means how different the complex
structures of two Riemann surfaces f1(X) and f2(X)
are. On the other hand, though we do not describe
the definition in this paper, the length spectrum dis-
tance dL([f1], [f2]) means how different the hyper-
bolic structures of two Riemann surfaces f1(X) and
f2(X) are. If X is an analytically finite Riemann
surface, then the two distances dT and dL define the
same topology on T (X), but otherwise it is not al-
ways true. Shiga constructed a topologically infinite
Riemann surface S such that the two distances de-
fine different topologies on T (S). His Riemann sur-
face is essentially the same as the Riemann surface
S constructed as follows: let {an}∞n=1 be a mono-
tonic divergent sequence of positive numbers such
that an+1 > nan, and let {Pn}∞n=1 be a sequence
of pairs of pants such that the hyperbolic lengths of
three boundary geodesics of Pn are an, an+1, an+1

(n = 1, 2, ...). Firstly, make 2 copies of P1 and
glue them together along the boundaries of length
a1, then we obtain a Riemann surface S1 of type
(0, 4). Secondly, make 4 copies of P2 and glue them
to S1 along the boundaries of length a2, then we ob-
tain a Riemann surface S2 of type (0, 8). Inductively,
for each n, make 2n copies of Pn and glue them to
Sn−1 along the boundaries of length an, then we ob-
tain a Riemann surface Sn of type (0, 2n+1). We
define the Riemann surface S as the exhaustion of
{Sn}∞n=1. Then the convex core of S is

⋃∞
n=1 Sn. (He

also showed that if a topologically infinite Riemann
surface X satisfies some condition, the two distances
define the same topology on T (X) in the same paper
[10]. And in 2018, we generalized his theorem, more
precisely, we showed that if X is a Riemann surface
with bounded geometry, then the two distances de-
fine the same topology on T (X) [4].)

In 2004, Matsuzaki [8] considered Shiga’s Rie-
mann surface S, a reconstructed Riemann surface R
from S and the Teichmüller modular group Mod(R)
for R. Before mentioning it, we introduce a propo-
sition for countability of the Teichmüller modular
group.

Proposition 1.1 (Proposition 1 of [8]). Sup-
pose X is a hyperbolic Riemann surface. If Mod(X)
is countable, then X = D/Γ satisfies the following
conditions.
(1) The number of simple closed geodesics on X

whose lengths are smaller than M for arbitrary
M > 0 is finite.

(2) The Fuchsian group Γ is of the first kind.
In §3 of [8], Matsuzaki showed that if a Riemann

surface S is constructed by gluing above-mentioned
pants {Pn}∞n=1 in the usual way, then S is not
geodesically complete, that is, there exists a geodesic
connecting ∂P1 and ∂Pn such that its length con-
verges as n → ∞. This means that the geodesic
completion of S does not coincide with S, hence the
Fuchsian group corresponding to S is of the second
kind. (cf. Proposition 3.7 of [1].) In particular,
Mod(S) is uncountable by Proposition 1.1 (2). How-
ever, if a Riemann surface R is constructed by gluing
the aforementioned pants {Pn}∞n=1 in a special way,
then R is geodesically complete, so the geodesic com-
pletion of R coincides with R. Here, a special way is
to give each boundary geodesic of each pair of pants
some amount of twist when we glue pants together.
Then, the corresponding Fuchsian group is of the
first kind, and also he could show that Mod(R) is
countable.

1.4. Generalized Cantor sets. Let
{qn}∞n=1 be a sequence of numbers in (0, 1). Put
I := [0, 1] ⊂ R. A generalized Cantor set E(ω) for
ω = {qn}∞n=1 is defined as follows: Firstly, remove
an open interval with the length q1 from I so that
the remaining intervals I1

1 , I2
1 ⊂ I have the same

length. Secondly, remove an open interval with the
length q2|I1

1 | from each Ii
1 (i = 1, 2) so that the

remaining intervals I1
2 , I2

2 , I3
2 , I4

2 ⊂ I have the same
length, where | · | means the length of the interval.
Inductively, remove an open interval with the length
qn|I1

n−1| from each Ii
n−1 (i = 1, ..., 2n−1) so that

the remaining intervals I1
n, ..., I2n

n ⊂ I have the
same length. For each n ∈ N, put En =

⋃2n

i=1 Ii
n.

We define a generalized Cantor set E(ω) for ω as⋂∞
n=1 En. In our previous paper [5], we considered



62 E. Kinjo [Vol. 100(A),

the Riemann surface XE(ω) := Ĉ \ E(ω) (obtained
from the Riemann sphere Ĉ by removing E(ω))
and the Teichmüller space T (XE(ω)) of XE(ω), and
proved a theorem about the Teichmüller distance dT

and the length spectrum distance dL on T (XE(ω)).
In this paper, we consider the Teichmüller modular
group for XE(ω).

1.5. Our results. At first, we give a suffi-
cient condition for Mod(XE(ω)) to be uncountable.
It is obtained by Proposition 1.1 above and a lemma
of our previous paper [5].

Theorem 1.2. If there exists a subsequence
{qn(k)}∞k=1 of ω = {qn}∞n=1 such that qn(k) > c
for some constant c ∈ (0, 1), then the Teichmül-
ler modular group for the Riemann surface XE(ω)

is uncountable. In particular, if infn qn �= 0, then
Mod(XE(ω)) is uncountable.

Not only ω such that infn qn �= 0 but also some
ω such that infn qn = 0 satisfies the condition of
Theorem 1.2. For example, let ω = {qn}∞n=1 be a
sequence defined by

qn =

{
1
2 (n = 2m − 1; m ∈ N)
(1
2 )n (n = 2m; m ∈ N).

Then infn qn = 0 and there exists a subsequence
{q2m−1}∞m=1 of ω such that q2m−1 > 1/3.

Next, we give a sufficient condition for
Mod(XE(ω)) to be countable. In Theorem 1.1 of
our previous paper [5], we considered two conditions
(I),(II) for ω such that infn qn = 0, and showed
that if ω satisfies either (I) or (II), then the two dis-
tances dT and dL define the different topologies on
T (XE(ω)). Now, if ω satisfies (II), then it satisfies
the condition of Theorem 1.2 above, too. On the
other hand, if ω satisfies (I), then it does not do so.
In this paper, our main theorem below says that if
ω satisfies (I), then Mod(XE(ω)) is countable:

Theorem 1.3. If the sequence ω satisfying

qn · log(log(1/qn+1)) → ∞
as n → ∞, then Mod(XE(ω)) is countable.

The sequence ω satisfying Theorem 1.3 con-
verges to 0 very rapidly. The following is an example
of such sequences which is a little different from Ex-
ample 1.2 of [5].

Example 1.4. Take a sequence ω = {qn}∞n=1

so that qn+1 = 1/ exp(n1/qn). Then

qn · log(log(1/qn+1)) = qn · (1/qn) log n = log n → ∞
as n → ∞.

Fig. 1 Pairs of pants
⋃3

n=1
(
⋃2n

i=1
P i

n)

The advantage of considering XE(ω) is the fol-
lowing

Proposition 1.5. For any ω, the Fuchsian
group Γ corresponding to XE(ω) is of the first kind.

By this property, we can construct the analyt-
ically infinite Riemann surface for which the Teich-
müller modular group is countable without caring
about twist of boundary geodesics of pairs of pants.
In section 2, we prove Theorem 1.2 and Proposition
1.5. In section 3, we prove Theorem 1.3.

2. Proofs of Theorem 1.2 and Proposi-
tion 1.5. We decompose XE(ω) into pairs of pants
as we (§2 of [5]) or Shiga (§3 of [11]) did. Recall that
for a sequence ω = {qn}∞n=1, the generalized Can-
tor set E(ω) is

⋂∞
n=1 En, where En is the union of

closed intervals {Ii
n}2n

i=1 in I = [0, 1] (n = 1, 2, ...).
Now, for each n ∈ N and each i ∈ {1, ..., 2n}, let
γi

n be a simple closed curve separating Ii
n from other

intervals Ii′
n , i′ ∈ {1, ..., 2n}\{i}. Then, in E(ω), let

[γi
n] be the simple closed geodesic which is freely ho-

motopic to γi
n, where [γ1

1 ] = [γ2
1 ], so we write [γ1] for

the geodesic. Let P i
1 be a pair of pants with bound-

ary geodesics [γ1], [γ2i−1
2 ] and [γ2i

2 ] (i = 1, 2). And
for each n ∈ N and i ∈ {1, ..., 2n}, let P i

n be a pair
of pants with boundary geodesics [γi

n], [γ2i−1
n+1 ] and

[γ2i
n+1]. (See Fig. 1.) Then we obtain a pants de-

composition
⋃∞

n=1(
⋃2n

i=1 P i
n). We call this a natural

pants decomposition of XE(ω).
To prove Theorem 1.2, we use a lemma in our

previous paper [5]. Here, �X(γ) means the hyper-
bolic length of a curve γ on a hyperbolic Riemann
surface X.

Lemma 2.1 (Lemma 2.1 (1) of [5]). For any
ω and any n ≥ 1,

�XE(ω)([γ
1
n]) <

π2

tanh−1 qn

holds.
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Remark 1. For each n, there are 2n simple
closed geodesics {[γi

n]}2n

i=1 as the n-th geodesic, and
in the case where 2 ≤ i ≤ 2n−1, �XE(ω)([γ

i
n]) <

π2/ tanh−1 qn does not hold, in general. (cf. Lemma
2.1 (2) of [5].) However, if ω is monotonic decreas-
ing, then �XE(ω)([γ

i
n]) < π2/ tanh−1 qn holds for any

n ∈ N and i ∈ {1, ..., 2n}. (cf. Remark 3 of [5].)
From the above, Theorem 1.2 is immediately

proved.
Proof of Theorem 1.2. By Lemma 2.1, if there

exists a subsequence {qn(k)}∞k=1 of ω such that
qn(k) > c, then �XE(ω)([γ

1
n(k)]) < π2/ tanh−1 c

for k = 1, 2, ... Hence, by Proposition 1.1 (1),
Mod(XE(ω)) is uncountable.

Before proving Theorem 1.3, we check Proposi-
tion 1.5. The following proof is based on the idea of
Prof. Shiga.

Proof of Proposition 1.5. Assume that the
Fuchsian group Γ is of the second kind for some ω.
Then, for any point p ∈ D, there exists a geodesic
ray r̂p in D starting at p such that �D(r̂p) is infinite,
but �XE(ω)(π(r̂p) ∩

⋃∞
n=1(

⋃2n

i=1 P i
n)) is finite, where

π : D → D/Γ is the the universal covering and⋃∞
n=1(

⋃2n

i=1 P i
n) is a natural pants decomposition of

XE(ω). Put rp := π(r̂p). Let {P ∗
n}∞n=kp

be a family
of the pants containing rp and {γn}∞n=kp

be a simple
closed geodesic of each ∂P ∗

n intersecting rp. Here,
E(ω) is totally disconnected, hence the diameter of
γn in C converges to 0 as n → ∞, and there exists
a point p∞ ∈ E(ω) such that γn converges to p∞.
Now take points p1, p2 ∈ E(ω) which are contained
in Ĉ \ ⋃∞

n=kp
P ∗

n and put W := Ĉ \ {p∞, p1, p2}.
Since rp goes to p∞, we have �W (rp) = ∞. However,
XE(ω) ⊂ W , so �XE(ω)(rp) ≥ �W (rp) and this is a
contradiction.

3. Proof of Theorem 1.3. Let ω = {qn}∞n
be a sequence of numbers in (0, 1), and let [γi

n] and
P i

n (n ∈ N, i ∈ {1, ..., 2n}) be a closed geodesic
and a pair of pants of XE(ω) taken in Section 2, re-
spectively. For each n ∈ N, we take the subsurface
Xn :=

⋃n
k=1(

⋃2k

i=1 P i
k) of XE(ω). Firstly, we show

the following lemma.
Lemma 3.1. Let ω be the sequence satisfying

the condition of Theorem 1.3. Then, for any K-
quasiconformal automorphism g : XE(ω) → XE(ω),
there exists n1 ∈ N such that if n ≥ n1, then the
image g(Xn) of Xn is freely homotopic to Xn in
XE(ω), that is, each component of ∂g(Xn) is homo-
topic to some component of ∂Xn.

To prove this, we use Lemma 3.2 [5], Lemma 3.3
[5] and Lemma 3.4 (Wolpert’s Lemma).

Lemma 3.2 (Lemma 2.3 of [5]). Let ω be the
sequence satisfying the condition of Theorem 1.3.
Then, for any i ∈ {1, ..., 2n} and j ∈ {1, ..., 2n+1},

�XE(ω)([γ
j
n+1])

�XE(ω)([γi
n])

→ ∞

as n → ∞.
Below, si

n(⊂ R) is the shortest geodesic segment
connecting [γ2i−1

n+1 ] and [γ2i
n+1] in each pair of pants

P i
n with boundary geodesics {[γi

n], [γ2i−1
n+1 ], [γ2i

n+1]},
and d(·, ·) is the hyperbolic distance on XE(ω).

Lemma 3.3 (Lemma 2.4 of [5]). Let ω be the
sequence satisfying the condition of Theorem 1.3.
Then, for any i ∈ {1, ..., 2n},

d([γi
n], si

n)
�XE(ω)([γi

n])
→ ∞

as n → ∞.
Lemma 3.4 [12]. Let f : X → X ′ be a K-

quasiconformal homeomorphism from a hyperbolic
Riemann surface X onto another hyperbolic Rie-
mann surface X ′. And let γ be a simple closed
geodesic on X and [f(γ)] be the geodesic of the free
homotopy class of f(γ). Then

1
K

≤ �X′([f(γ)])
�X([γ])

≤ K.

Proof of Lemma 3.1. Note that for K ≥ 1,
there exists n1 ∈ N such that if n ≥ n1, then

d([γi
n], si

n)
�XE(ω)([γi

n])
> K

for any i ∈ {1, ..., 2n} by Lemma 3.3. Now, assume
that for any N ∈ N, g(Xn) is not freely homotopic
to Xn in XE(ω) for some n ≥ N . Then, for some n ≥
n1, g(Xn) is not freely homotopic to Xn, so there ex-
ists a component γn of ∂Xn such that [g(γn)] crosses
∂Xn, where [g(γn)] is the closed geodesic freely ho-
motopic to g(γn). Then, the length of [g(γn)] is
larger than d([γj

n+m], sj
n+m) for some m ≥ 0 and j ∈

{1, ..., 2n+m} since [g(γn)] crosses [γj
n+m] and sj

n+m.
Therefore, �XE(ω)([g(γn)]) > d([γj

n+m], sj
n+m) >

K�XE(ω)([γ
j
n+m]) ≥ K�XE(ω)([γn]) holds by Lemmas

3.3 and 3.2. This contradicts Lemma 3.4.
Next, we consider a half Dehn twist, a Dehn

twist and multiple twists about each component of
∂Xn for a sufficiently large number n. We do not
mention the definition of a half Dehn twist, but
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roughly speaking, a half Dehn twist about [γi
n] is a

(homotopy class of) quasiconformal automorphism
of XE(ω) interchanging two points of the boundary
of XE(ω), i.e., two points of E(ω). (To learn about
a half (Dehn) twist, see [3], for example.)

Lemma 3.5. Let ω be the sequence satisfy-
ing the condition of Theorem 1.3. For for any K-
quasiconformal automorphism g : XE(ω) → XE(ω),
there exists n2 ∈ N such that if n ≥ n2, on any com-
ponent of ∂Xn, g causes neither a half Dehn twist,
a Dehn twist nor multiple twists.

We use a lemma of our previous paper [5] and a
theorem of Matsuzaki [7]. In the following, η is the
collar function: η(x) = sinh−1(1/ sinh(x/2)).

Lemma 3.6 (Lemma 2.2 of [5]). Let ω =
{qn}∞n=1 be an arbitrary sequence of numbers in
(0, 1). For any n ∈ N and i ∈ {1, ..., 2n},

�XE(ω)([γ
i
n]) > 2η

(
π2

log((1 + qn)/(2qn))

)

holds.
Theorem 3.7 (Part of Theorem 1 of [7]). Let

γ be a simple closed geodesic on a hyperbolic Rie-
mann surface X and f be n-times Dehn twist about
γ. Then the maximal dilatation of an extremal qua-
siconformal automorphism of f satisfies

K(f) ≥
√
{(2|n| − 1)�X(γ)/π}2 + 1.

Proof of Lemma 3.5. Since ω satisfies the con-
dition of Theorem 1.3, qn → 0 as n → ∞. There-
fore �XE(ω)([γ

i
n]) → ∞ for any i by Lemma 3.6.

Hence, for K ≥ 1, there exists n2 ∈ N such that
�XE(ω)([γ

i
n]) > πK2 if n ≥ n2. Assume that g cause

a half Dehn twist fn on some component γn of ∂Xn

for some n ≥ n2. Then f2
n := fn ◦ fn is a Dehn twist

about γn, so the maximal dilatation K(f2
n) of f2

n is
larger than

√
K4 + 1 > K2 by Theorem 3.7. Since

K(f2
n) ≤ K(fn)2, we have K < K(fn), and this

is a contradiction. This also implies that g causes
neither a Dehn twist nor multiple twists.

Finally we prove the main theorem.
Proof of Theorem 1.3. For a K-quasiconformal

automorphism g : XE(ω) → XE(ω), put N :=
max{n1, n2}, where n1, n2 are numbers of Lemma
3.1 and Lemma 3.5, respectively. Then, for any n ≥
N , g(Xn \ Xn−1) is homotopic to Xn \ Xn−1 =⊔2n

i=1 P i
n in XE(ω), and on any component of ∂Xn, g

causes neither a half Dehn twist, a Dehn twist nor
multiple twists.

Now, for an arbitrary K ∈ N, let Mod(XE(ω))K

be a subset of the Teichmüller modular group
Mod(XE(ω)) such that each element has K-
quasiconformal automorphism g as a representative.
From the above argument, Mod(XE(ω))K is embed-
ded into the reduced Teichmüller modular group
Mod�(XN ) for the bordered Riemann surface XN .
Indeed, g is determined by g|XN

, that is, for quasi-
conformal automorphisms g1, g2 of XE(ω), if g1|XN

=
g2|XN

, then [g1] = [g2].

Since XN is topologically finite, Mod�(XN )
is finitely generated, thus countable. Hence
Mod(XE(ω))K is countable for any K ∈ N, and
Mod(XE(ω)) is countable, too.
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