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3. On the Flat Conformal Differential Geometry, IIL"

By Kentaro Yano.

Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA., M.1.A,, Feb. 12, 1946.)

§3. Theory of curves. (Continued)

In Paragraph 1 of the present Chapter, we have established the Frenet
formulae (3.20) for a curve in a flat conformal space Cy. But, the parameter
t adopted there being defined by a Schwarzian differential equation, it is
determined only up to a homographic transformation. The Frenet formulae
(3.20) are not invariant under this homographic transfomation of the para-
meter £. Consequently, the curvatures Ka), K@, ...... » K»-1) appearing there
are not conformal quantities attached intrinsically to the curve.

In the next Paragraph, we shall introduce a purely. conformal parameter
o on a curve, and establish the purely conformal Frenet formulae with
respect to this conformal parameter o.

2°. The Frenet formulae with respect to a conformal parameltey.

Let us consider a homographic transformation

(3.24) i= gi‘g (ad — be # 0)

of the projective parameter £. Then, the current point-hypersphere S defined
by (3.4) is transformed into

(3.25) So = (Lg—_*__-'—zc—)r; Son
the unit hypersphere Sq) definedlby (3.2) into
(3.26) Sp = —3—2-_-'_0—‘1- So + Sw,
and the point-hypersphere S(s) defined by (3.6) into

(3.27) Sy = + 70‘(11:%58(0 - -2—;7(1“__-';3) Sw + -(:jii‘zf S(x0).

Thus, if we put
(3.28) % Sty = K52y
we obtain, from (3.27),
kS = ‘(I%igg; KnSa-

1) Cf. K. Yano: On the flat conformal differential geometry I, II. Proc. 21 (1945),
419-429 ; 454-465.
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The S and Sw being both unit hyperspheres, we find

'—c;l) = (E;Z i g%%z“ Kq),

or
K@ = (—g—;-)zn(n,
from which
3.29) (Rt = (cabat.
Consequently, the differential defined by
(3.30) do = (et

is invariant under any homographic transformation of the projective para-
meter. The parameter defined by ¢ = [ do may be called conformal para-
meter on the curve. For a circle, the first curvature K vanishes, and
consequently the conformal parameter does not exist. It plays the roéle of
a minimal curve in the conformal geometry.
Substituting
km = kay | 2 and ka? = guoreY
in the expression of ¢, we obtain

(3.31) o= f (gure”)ds,

where the vector »! is defined by (3.12).
The conformal arc length ¢ being thus defined, the point-hypersphere
3.32) R = a4y
is a conformal current point on the curve.
Differentiating (3.32) along the curve, we find

(3.33) Ry = -‘% Ro = A + —di A,

which is also conformal unit hypersphere orthogonal to the curve.
Differentiating the equation (3.33) along the curve, we find

from H(E 5 re)ar (28 nea)

The hypershere -d‘—i&—Ru) being not in general a point-hypersphere, we
shall seek for a function Aq such that

(330 4 Rwy~ ioRo = T[ IS — ) Ao
0% G
(% L)+ 4]

be a point-hypersphere. In order that it will be the case, we must have

1) K. Yano and Y. Muté: On the conformal arc length. Proc. 17 (1941), 318-322.
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guoata’ + %‘2‘ - 2(‘3- - gg + a®— 621(1)) =0,
or
1
335) Jo =3 [(0 8} = G gwarar — ).

The Aq) thus defined is a purely conformal curvature of the curve.
If we put

-‘%; Ry — Apy Ry = R=),

or
(3.36) —gg—Rm = A R) + Re),
the R») is a point-hypersphete on the unit hypersphere Ry and satisfy
RoyR) = —1.

Substituting (3.35), and (3.36) into (3.34), we find
— __1_ 1¢ 6° v A _?_. f_ig.
G3)  Re=5|5(% +amee)ds+(a +5 50 ) 4y + Ax).

Now, differentiating the relations
Roy Koy = ~1, RoRo) =0, RoRio) =0

along the curve, we know that —AnRa + g;R(,o) is a hypersphere passing

through the points R and R) and orthogonal to the unit hypersphere R).
On the other hand, we have, from (3.37),

—ApRoy+ :?— Rw) = -—%[gw —‘36‘.’1 @’ + Ilgua# dgi] Ao

+ 5“ -+ (g — a) +11m fdi ]Az,

or

(3.38) —AoRw + ~g; Rix) = Se2),

which shows that the hypersphere S is invariant under homographic trans-
formation of the projective parameter ¢£. Thus, if we put R = S, we have

(339 —g; R=) = AoRw + R,
where
(3+40) Rp = %—[v"Ao + v1A42]

is a unit hypersphere passing through the points R and R(x) and being
orthogonal to the hypersphere Ry).
Now, differentaiting the relations

RoR2 =0, RyRz=0, R=Roy=0, RaRz=1

with respect to o, we find that —Rq) + —d‘—i;R(z) is a hypersphere passing
through the points R and R(«) and being orthogonal to Ry and R).
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Thus we can put
—R) + g& R = AaRa),
or
(3.41) -‘%,— R = Ro) + 2aRa),
where R3 is a unit hypersphere passing through Ry and R(~) and orthogonal
to Ry and R,
Comparing the equation (3.41) with (3.16) and remembering that R =

2
—d%sw), R2 = S and ko = (—%‘;—) , we find

(3.42) Rg = S@ and Ao = K@ / %%.
Putting (3.40) in the form
(343) Ro = 79 Ao + 7» Ab,
where
9 i
(3-44) 7?2) = ’%2’ ) 7/%2) = %ﬁ“v

we have, by differentiation,

d R = ( iz + Hﬁv'/(z)’?m) Ay + ( ”7‘2) >+ ’7(2)77(1)) Aa

and consequently

j R = (——7—(2— + lluummu) - 0) Ao + ( 77 ~+ 77(2)’7(1)) Az

by virtue of the relations

— R +

R
oy =0, 7 = %i-.

Thus, putting

(3.45) R = 74y +99A1,
we have

dm) + Mpglan = & + 70,

(3.46)

32(2) + 7@)’7(1) = A2%@),

where 71én is a unit vector orthogonal to 77(1) and 77&).
Differentiating next the relations
RoR®» =0, RpR®» =0, Re)R3 =0, RaRs =0, RaRe =1
with respect to o, we find that AaR@ + —g;—R(a) is a hypersphere passing
through the points R and R(») and being orthogonal to Rqu), Rp2 and Rgq).
Thus we can put

AaRe + :};, R = ZaRw
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or

(347) %; Ra3 = —ia Rey + A3 Rw),
where Ry is a unit hypersphere passing through R and R(.) and orthogonal
to Ry, Re and Rg.

Comparing ' (3.47) with (3.18), we find

(3.48) Ry=Sw and Ae = Kp / %»
If we put
(3.49) Ry = 77?4)Ao + 7id,,

we have, from (3.45) and (3.47),

ant By 0 0

—2‘(;3)~ + ey = —Adam + Aam,
(8.50) only 0 2 2 2
dir + 7@ = —ia7@ + Adyw,

. . 2
where 7% is a unit vector orthogonal to 7{, % and 7.
Proceeding in this manner, we shall arrive at the formulae

—dd; Ro = Ray, -;7 R = o) Ro + Ree), jddj; R) = An Roy + Reyy

,

7?; Ro = Ro + Ao Ro),

‘g&— Rg = —o Re) + A R,

(351 7d; R = —2g) R + 2w Re),

............

-d%- Ry = —in-1 Rin-1y,

where Ra), R, ...... » Rw) are n mutually orthogonal unit hyperspheres all
passing through the points R() and R(»), R being a point on the curve and
R a unit hypersphere orthogonal to the curve.

These are the Frenet formulae for the curve with respect to a conformal
arc length o.

If we put
Rp=6Ay Rop= Z Ao + 4‘% A,,
Re= | [3(G+awaa)d+(a+ & E) g, + 4],
(8.52) Rg = /?2) Ay + 77{‘2) A,
R = 7% Ao + 7 A,

oooooooooooo

Ron=%n Ao+ 7w A,,
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we have
”
‘;’ Dt I Ay gty = o + 70,
”
dd/ D+ [ W T = — A% + A® T,
drly BV
@55 T 7t 7 = — Aoy T + Aw 7,
S
@i"—il + I Ton-n W = — Ain-27in-2 + An-1 Tl
d
’7<n) + 1w o Tom 9 = — A= Tin-1,
and
¢ Syl
,-9;7‘2%-— + 7 gy = ) 7o,
(?v(a) + 7% 7l = — Aoy 7l + Aa T,
3’7(4) = — g
@58 ] + R0 7y = — Ao 7 + Ao T,
0
?t(i” mt N ;7(” -1 7(1) = — An-2) 77(,, -2) + An-1 ’7(n);
1
—6%-0’9-—- + 7 Tl = — An-1 Vin-1.

These are purely comformal Frenet formulae for the curve with respect
to a conformal parameter o.

3°. Method of E. Cartan.

In Paragraph 1 of the present Chapter, we have established the
Frenet formulae for a curve in the conformal space by the use of a projec-
tive parameter ¢/ and in Paragraph 2, we have introduced a conformal
parameter ¢ on the curve, and we have modified the Frenet formulae of
Paragraph 1 so as to be purely conformal, that is to say, to be independent
of the choice of the projective parameter ¢.

In the present Paragraph, we shall show how we can obtain directly
the conformal Frenet formulae applying the method of repere mobile of E.
Cartan.

Let us consider a curve §4(7) in the conformal space C, and attach, at
each point of the curve, a repere mobile [Ry, Ry, R, ..., Ru, Rx], where Ry
is a point-hypersphere coinciding with the current point of the curve, Ry, R,,

., Ry, m mutually orthogonal hyperspheres passing through the point Ry
and finally R~ the point of intersection other than Ry of # hyperspheres Rj,
R, ..., R, such that RyR» = —1.
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Then we have, along the curve, formulae of the form

dRy = we Ry + woy Ry + wee Rz + ............ + won Rn + wo» R,

dRt = wioRo + w1y Ry + wig Rz + ............ + win Ry + w1 R,

dR; = wy Ry + g Ry + wpe Ry + ............ + won Ry + was R,
B85 )

dRy = wnoRo + wm Ry + o Rz + ............ + wan Rp + wno Roo,

\d Rso= w0 Ro + @i Ry +wooa Ry + ............ + Woon Ry + o R,

where ws are Pfaffian forms with respect to the principal parameter » which
determines the position of the point R, on the curve, and the secondary
parameters %y, #a, Us, ...... which determines the position of the repére mobile
[Ro, Ri, Ry, ..., Rp, Rx]

The inner products RoRy=0, RyR; =0, RyRx=—1 Ry R. = Osp,
Ry Ro =0, and RxR» =0 being all constants, we must have

(3.56) {woo + Wooro =0, Wpx = Wxo =0,
W) = Wy Wi = Wy, @p + wup = 0.
Consequently, the formulae (3.55) take the form

d Ry = wo Ro + wor Ry + woe Rz + ............ + won Ry,

dR) = wRo ‘R + ... + win Ry + woy R,
@357 dR; = woRy— w2 Ry o + won Ry + woz R,

dRp=wnRo— ot Ri— w0 Ry~ oo + won Rooy

dRw = 0 Ry + wy Ry + ............ ~+ wno Ry — oy R.

We observe here that the Pfaffians wpy do not contain the differentials
of the secondary parameters, for, if we fix the principal parameter 7, then
the point Ry is fixed and consequently wo; = 0.

Moreover, the Pfaffians «’s must satisfy the structure equations

4 n N
(W) = & l[w(lu Wwo),
u=

(WY = [wos wna] + 3 [woy @.2],
(3.58) v=1

n
(wap) = [(ugo wop] + [")01 wp] + fl[wzv Wup),

n
[(@20) = [wio weo] + fl[wxu W),

where the prime denotes the outer derivative and the parenthesis the outer
product of the Pfaffians.

We shall now choose the unit hypersphere R; in such a way that Ry
should be orthogonal to the curve. Then R; pelonging to the pencil of
hyperspheres determined by R, and R, + d R;, we have

(3.59) d Ry = moo Ry +wo Ry
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and
(3.60) woi =0 | (=2, 3y ooy 1.

Here wo is not identically zero, for if wey =0, the point R, will be
always fixed. We shall call such a repére the repére mobile of the first
order.

Differentiating (3.60) exteriorly and taking account of (3.60) itself, we find

[wor w1i] = 0.
Following a lemma of E. Cartan, we have, from the above equation,
(3.61) Wl = di WL

Differentiating this equation exteriorly and taking account of (3.58),
(3.60) and (3.61), we find
n
[d ai + ai weo + 2'2aa Wai + Wi, we] =0,
a:
from which
n
(3.62) d ai + oi weo + Z.'zaa wai + wip = Biwor.
a=.
Thus, if we fix the principal parameter » and vary only the secondary
parameters, we have
”n
0 i + ajep + Z.'zaaeai +eip=0,
a=

where 0 denotes the- differential with respect to the variations of the secondary
parameters, and w(0) = e.

The above equations show that we can arrange the secondary parameters
in such a way that we have o; = 0.

If we perform this specialization of the repére mobile, we find, from
(3.61) and (3.62),

(3.63) w;i=0
and
(3.64) wio = fi wa

respectively. We shall call the repére mobile of the second order, a repere
mobile whose relative components w satisfy

(3.65) | wi=0 wi=0 | (G=23 ..., 0.

Differentiating (3.64) exteriorly and taking account of (3.58), (3.64) and
(3.65) we find

[dBi+ 2 Biwoo + i'zﬁa wai, wot] = 0,
am
from which
7
(3.66) dpi+ 2 pRiwe + Ezﬂa Wai = 7i Wote
a=
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Thus if we fix the principal parameter », we find
aﬁi+219ieoo+§-:zlgaeai=0
a=

for the variations of the secondary parameters.
Here, we must consider two cases according as #;==0 or B; 0.
If :i=0, we have wip =0 from (3.64). Thus our formulae (3.57) take
the form
(3.67) d Ry = wio Ry + wo1 R,
dRx= wic Rt — woo Rx.
Substituting here R; by a hypersphere of the form aRo+ R; and R
by %— 2 Ry + a Ry + R, we can put (3.67) in the form
rRo = woo Ro + wo1 Ry,

{dRo = wo Ry + wo1 Ry,

d R) = Wo1 Rso,
dRo= — wy Rx.
Then, multiplying R, and R, by a suitable factor and dividing R~ by
the same factor, we obtain finally

d Ry = w1 Ry,
(3.68) dR] = wo1 Rx,
dRoo‘—"-o.
If we put we = dt, we have
d p _ 4 p _ 4 p _
—d—t- Ro = Rl) dt Rl = ROO, dt Ry = 0,

thus, the curves for which ;== 0 are circles of the conformal space C,.
Let us return to the gemeral case §;3 0. In this case, the equations
which give 0 8; show that we can arrange the secondary parameters in such

a way that we have f2=1 and 8=0 (=3, 4, ...... , 7).
Then we have, from (3.64) and (3.66),
(3.69) w20 = woy,
(3.70) wjo =0 (=3, 4, ...... , M)
and
(8.71) 2 ww = r2wo1, wzj = i wot
respectively.

We shall call the repére mobile of the third order a repere mobile whose
relative components satisfy the relations

(=213 .., n),

3.72) | woi = 0, wi=0, wpo=wy wp=0 [ G=3, 4 )

the relations (3.71) being its consequences.
For a repére mobile of the third order, we have
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(01) = d wor (6) — 0 wo1(d) = — 6w (@) = 0,

which shows that wo; is an intrinsic quantity of the curve. We shall call it
differential of the conformal arc length and denote it by do.

Differentiating exteriorly the first of the equations (3.71), and taking
account of the relations (3.58), (3.71) and (3.72), we fnd

[dr2 + 72 woo + 2 w10, wer] = O,
consequently
(3.73) dye + r2 w00 + 2 wio = 02 woy,
from which
52’2 +rse0+2e90=0

for the variations of the secondary parameters. This equation shows that

we can arrange the secondary parameters in such a way that we have 7. = 0,
and consequently

(B.79) woo =0
and
(3.75) 2 w10 = 0z wor.

Differentiating exteriorly the second of the equations (3.71), and taking
account of the relations (3.58), (8.71), (3.72) and (3.73), we find

[dr; + 52: 37’15 wbj, won] =0,
from which
3.76) dyi +b§”3 76 wei = O wor.
Consequently we have
07i +b§'3nebi =0
for the variations of the secondary parameters.

If y;=0, we have, from (3.71), ws; = 0, and the formulae (3.57) take the
form
d Ry = wn Ry,

d Ry = wio R1 + wp R,
dRx= — wio R1 + wou Ry,

d Ry = wo1 Ry,

thus, the curve is a curve on a two-dimensional sphere.

If ;% 0, the equations giving Jy; show that we can arrange the
secondary parameters in such a way that we have yz = 0 (k=4,5,
and consequently

(3.78) wak =0,
.79 w3 = 73 wa,

i

@77
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and
(3.80) wsk = Ok wot.
We shall call the repére mobile of the fourth order a repére mobile
whose relative components satisfy the relations

(3.81) woi =0, wii=0, we=wr wo=0, w=0 wp=0
(=23, ..,n;, j=3,4,..,n; F=4,5, ..., n),
relations (3.75) and (3.79) and (3.80) being its consequences.
For a repére mobile of the fourth order, we have
(w10 = d ano(0) — 0 wio(d) = 0.
But, the equation (3.75) shows that wi(d) = é 02 wo1 (0) = 0, and con-
sequently

d wi(d) = 0.
Thus, wye is an intrinsic quantity of the curve, so we shall put
w10 _
(3.82) wor A1

and call it the first conformal curvature of the curve.

For such a repére, we have also

(wes) = d w23(8) — 0 ws(d) = 0.
But, the equation (3.79) shows that wss(6) = 73 w1 (8) = 0, and consequently
0 wys(d) = 0.

Thus wys is an intrinsic quantity of the curve, and consequently we

shall put
(3.83) g,
wo1

and call it the second conformal curvature of the curve.

Continuing in this way, we shall arrive at the formulae
dR, = do Ry,
dRy = Aido Ry + do R,
dRx= A1do Ry + do R,
(3.84) dR; = doRy+ Axdo R,
dRs = — A3do R; + Aydo Ry,
Ld‘Rn = — Ap-1do Ry,
which coincide with (3.51).

The quantities da, 4, 4, ...... , An-1 appearing in these formuilae being
purely conformal invariants, we can develop here the theory of natural
equations for a curve in the conformal space C,

1) A. Fialkow: The conformal theory of curves. Proc. Nat. Acad. Sci. U.S. A,, 26
(1940), 437-439.



