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61. New Foundation of the Theory of Simple Rings.

By Gor6é Azumava.
Mathematical Institute, Nagoya Imperial University.
(Comm. by T. TAKAGI, M.1.A., Dec. 12, 1946.)

Beautiful theory of simple rings and their subrings has been developed
mainly by Brauer, Noether and Albert.)) Jacobson has recently succeeded in
obtaining further the Galois theory for quasi fields.

Under a certain new idea we want in the present paper to re-establish
and generalize these theoriegs. Our basic method® used in the whole
consists principally in the fact that if R is a simple ring (i.e. a matrix
ring over a quasi-field) and M a finite R-module then the R-endomorphism
ring R* of M is also simple, M is finite with respect to R* and R is consid-
ered conversely as an R*-endomorphism ring of M; further to every auto-
morphism of R there belongs at least one semi-linear transformation of M.
This, together with other related theorems, is discussed in §1. After these
preparations we are able to give in §2 a quite natural and direct
proof to the wellknown fundamental theorem for simple rings. In some

(1) See R. Brauer, Uber Systeme hyperkomplexer Zahlen, Math. Zeitschr. 30 (1929);
E. Neother, Nichtkommutative Algebra, Math. Zeitschr. 39 (1933); M. Deuring, Algebren,
Ergebn. Math. 4 (1935); A. A. Albert, Stucture of Algebras, New York (1939).

(2) N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann.
Math. 41 {1940).

(3) It is perhaps of some interest to compare our method with those hitherto given.
Brauer first used the algebraic closure of coefficient field. Noether built the theory on
her beautiful theory of representations in quasi-fields; the difficulties in separability
were so removed and the theory was extended from algebras to rings. Embedding the
algebra into matrix algebra over the ground field, Weyl and Brauer avoided the repre-
sentation theory in quasi-fields, though were restricted again to algebras and the theory
was not fully expounded; a complete derivation of the theory along this line was given
in a note by Kawada-Oi (Zenkoku-Shijé-Sugaku-Danwakai 162), The similar effect was
accomplished in Albert’s method by forming the direct product with an inverse-isomor-
phic algebra; a similar approach was given independently also by Chevalley and Naka-
yama in their seminaty in Princeton, as the writer has been informed. Our method is
however to characterize the simple ring as a subring of an absolute endomorphism fing
(of a certain module). If we restrict ourselves to algebras then our method is more or
less similar to those of Weyl-Brauer and Albert. But our absolute endomorphism ring
enables us,-not only it is much more natural and directer than the matrix ring over
the ground field, to built the theory in a far mare general case. Indeed Nakayama, to
whom also the present work owes usefu! remarks, has found that our method is parti-
cularly of use in his study of “irreducible rings.” (The theory will be reported shortly
in these proceedings as well as in a joint paper with Nakayama and the writer.)
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points, we are led to refined results. The same method enables us moreover,
in §3, to extend Jacobson’s Galois theory to the case of simple rings to ob-
tain that, given a simple ring R and a finite group ® of its outer automor-
phisms, there exists a one-to-one corr%pondence,. in the usual manner, be-
tween subgroups of ® and simple subrings of R containing all G-invariant
elements of NR.

§1. Right modul of a simple ving.

Let M be a module. The totality A of all endomorphisms of <t forms
an (associative) ring with identity element i.e. the absolute endomorphism
ring® of M. Suppose there be given a right operatorring R of M. Then
every right-sided multiplication of element ¢ of R induces in M an absolute
endomorphism a (¢ W) and by means of the mapping a — a®is homomor-
phically carried upon a subring 3t of A. The R-endomorphism ring of M is
nothing but the commuter ring V{&) of R in A. Let us say that M is closed
with respect to R if V(V(R)) = R, that is, if R is identical with the V (R)-
endomorphism ring, of 1.

Lemma 1. Let B be a (finite or infinite) divect sum off R-submoduli w1,
(pe M) such that therve exists one ™o to.which cvery wm, is R-homemorpkic. If
further wq is closed with rvespect to R, then M is also so.

Proof. Let 7,V (5?) be, for each pe M, an extention of an R-homomor-
phism between mty and my, : mgp,=m,, and take in particular 7 to be idempo-
tent. Then 7,V (5%) 7o is, as usual looked upon as an M-endomorphism ring
of my. Consider an arbitrary V(&)—endomorphism a of Miue VIV (&)).
Since roa = Moo = Wy, =My, « induces in my an voV(&)yo—endomorphism.
Hence there exists, by our assumption, an element ae R for which #a = #ou
holds for every wuyemy. Further we have (4o 7u) v = (o) Pu= (%o@) Y= (Ue)y) @
for each pe M and consequently @ = «. This completes the proof.

Now let R be a simple ring (with unit element and satisfying the mini-
mum condition for right ideals). Then it is well known that & is isomorphic
to a matrix ring of a certain dimension, say 7, over an up-to-isomorphism
uniquely determined quasifield ® : R = (&), , which we shall call the guasi-
Sield belonging to (the simple ring) R ; the matrix degree 7 is also uniquely
determined and shall be denoted by [R] Simple right ideals of R are all
operator-isomorphic and R is the direct sum of » simple right ideals. The
operator-encomorphism quasi-field & of a simple right ideal r is inverse-
isomorphic with & and R is considered conversely as a SR-endomorphism
ring of ¢, that is, v is closed with respect to &'.

(4) We consider % as a right-hand multiplication domain of M.
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Consider next an R-right-module M on which the unit element of N
operates as the identity endomorphism. Then M is as is well known, the
(finite or infinite) direct sum of simple submoduli operator-isomorphic to
the simple right ideal * of M. In virtue of Lemma 1, M is therefore closed
with respect to R. The (cardinal) number of direct summands is independ-
ent of the direct decomposition which we shall denote by [M | R]. The
behavior of M, as R-right-module, is determined by [M | R]. If in part cul-
ar [M | ¥] is finite, then R-endomorphism ring R* of M is isomorphic to
the [M | R]-dimensional matrix ring over & and [M | R*] = [RN].® These
facts we may describe as follows :

Theorems 1. Let U be the absolute.endomorphism ring of a module M and
let there be given a simple subrving R of U containing the identily element
of 8. Then:

) WVR) = R.

2) If R is a simple subring of A isomorphic with R such that [M | K] =
[M | R], then any isomorphism between R and R can be extended to an inner
automorphism of AU.

3) In case [M | R] is finite, V(R) is also a simple ring ; the quasi-field be-
longing to it is inverse-isomorphic to that of R and moveover

[MIR]=[VR®] []|VE®]=[R]

As is easy to see, M possesses a (right-) linearly independent basis over R
if and only if [M | R] is divisible by [R]® and, if this is the case. the num
ber of elements constituting the basis is equal to [ | R]/[R], which we shall
call the (right-sided) rank of M over R and denote by [Pt:R].

Theorem 2. Let M, A, R be as in Theorem 1. Given moreover a simple
subring © of R containing the unit element of R such that |R | ©] is finite.
Then :

1) Any isomorphism ¢ of R into A which maps & upon itself (B¢ = &)
can be exténded to an inner automorphism of A.

2) When [ | R] is finite, the relation of V(8) and V(R) is the same as that
of R and & and there holds [R | ] [VR)] = [V (®) | VR)][C]; in particular
R possesses a right-linearly independent basis over & if and only if V(®) has
the same over V(R) and we have, in this case, [R: 8]} = [V(6): V(R)].

Proof. 1) follows readily from Theorem 1, 2), because [ | R][t | &] =

(6) For let 1 =e¢; + ez + ... +er be the decomposition of the unit element 1 of %
into mutually orthogonal primitive idempotent elements ey, ep, -, ey (# =[R]. Then
Pt = Mey + Mep + ...+ Mey and, since R is the R*-endomorphism ring of M, each Me;
is, as ®*-module, directly indecomposable. But, since %* is simple and hence every %*-
module is completely reducible, each Me; is necessarily simple ; chis implies [M | R¥T=[R].

(6) Of course, this is the case when [ | %] is infinite.
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M) S]=[M| R ][+v | &] and [¢¢ | &] is finite, where v denotes a simple
right ideal of R.

2) From [M|R] [+16]=[M|S] and [R| 6] =[R] [r| &], it follows
RIS [MIR]=[R][M| 6] But since [M|6G]=[V(S)] and [M|R]=[V
(R)] by Theorem 1, we have necessarily [R | &] [V@®R)] =|R] [V (&)] As[M

| V&R)] = [R] whence [V(®) | VR)] is finite, we have, by replacing R, & by
V{®), VR) respectively, the simijar relation [V(®) | V®)] [6] = [V(8)] [R].
Comparison of these two relations gives our desired relation [R | 8] [V(R)]
=[V(®) | V(®)] [€]

§2. The fundamental theorem for simple rings.

Theovem 3D Let R be a simple ring with the center Z and let S dbe a
simple subalgebra of R over Z (such that [©:Z] is finite). Then :

1) The commuter ring Vi (®) of © in R is also simple and the quasi-field
belonging to it is the same as that of the direct product R x & (comstructed
over Z), where & is inverse-isamorphic with &.

2) " The commuter ring Va(V(®)) of Va(®) coincides with &:

Va (Vi (€) = 6.8

3) R possesses a left- as well as a vight- linearly independent basis over
Vi () and the vank of R over Vw (S) is equal to that of & over Z (in both
left-and vight-hand sides): [R:Vyn (8)]=[8:Z]®

4) Any isomorphism ¢ of © into R leaving invariant every element of Z
can be extended to an inner automorphism of R.

5) The product ©-Vy (8) (constructed inside R) is divect over the comsmon
center K =8_Vyw(®) of ® and Vu(8); it coincides moreover with the commuter
ring Va(K) of K in R®,

Proof. Consider the absolute endomorphism ring ¥ of (the module) K.
We may regard ® as a subring of ¥. The operator-endomorphism ring V.R)
=R of the R-right-module R is, the totality of left multiplications of ® and
hence inverse-isomorphic with ® and V(R)=R. Now R-R’ is, by Noether-
Kurosh’s theorem,® divect over Z=R_R’ and is also simple ; moreover [R | &x R’]

(7) Cf. Noether, 1. c. § 5; Deuring, 1. c. IV, § 4; Albert, 1. c. IV.

(8) These three results were proved hitherto only when ® is a (finite dimensional)
simple algebra over Z.

(9) Neother, 1. c. § 4, Erweiterungssatz; Kurosh showed, however, that this Noe-
ther’s theorem remains still valid in the case when A is a two-sided simple ring with
unit element (but not necessarily satisfying the minimum condition for right ideals) and
S is even infinite over the center P of A: see A. Kurosh, Direct decompositions of simple
rings, Recueil Math. 53 (1942). Under Noether-Kurosh’s theorem we shall therefore un-
derstand this general form. From this theorem it follows, as is pointed out to me by
Nakayama, that if A and S are contained in a certain over-ring in which A and S are
element-wise commutative then the product A.S of A and S is direct over P:A.S=A
x S; observe that S (whence A x S) need not be two-sided simple.




No. 11.] New Foundation of the Theory of Simple Rings. 329

is finite, because [R | R,] = [R] is so.

Since then V&) = V&)  R=V (@) ~V(R) = V(ExR), we have our
assertion 1) immediately from Theorem 1, 3). Further, Theorem 1, 1) im-
plies Va(Va(®)) = V(V{&xR") = (BxR’) ~ V(R)=6; this proves 2). 3) follows
from Theorem 2, 2), since every linearly independent basis of & over Z is at
the same time that of @x R’ over N’'; the existence of a left basis follows
by the leftright symmetry. For 4), ¢ is uniquely extended, in the natural
manner, to an isomorphism between ©x R’ and & xR’ leaving invariant
every element of ®. Theorem 2, 1) implies then that there exists a
regular (=inversible) element ¢ in V®") = R such that c¢-lxc = x¢ for every
x¢®. The first half of 5) is also an immediate consequence of the Noether-
Kurosh’s theorem. The second half follows readily from [R: Va(K)][S-Vn
©): Va@)]=[K:Z][€6:K] =[&: Z] = [®: Va(8)], according to 3), and &-Vy
®)= Vr(K).

Let now R be a primary ring (with chain condition). Then R is, as is
well known, isomorphic with a matrix ring over a completely primary ring
and hence for any primitive idempotent element e of R the (directly inde-
composable) right ideal eR is tlosed with respect to ®. Let us assume fur-
thermore that R is wuni-serial.19 Then every R-right-module Mt is, accordirg
to the fundamental theorem for uni-serial rings, a direct sum of submoduli
all operator-homomorphic to eR; furtheyr if M is faithful (with respect to R), then
there must appear at least one direct summand which is operator-isomorphic
to eR. These two facts enables us, in virtue of Lemma 1, to generalize
Theorem 1, 1) to our uni-serial ring R. Observing further that the direct
product of a normal simple ring and a uni-serial algebra is, on account of
the Noether-Kurosh’s theorem, also uni-serial,'V we can prove in the similar
way as Theorem 3, 2)

Theorem 302 Let R be a simple ving with the center Z and let © be a
uni-serial subalgebra of R over Z. Then Vi(Va(8)) = &.

§3. Galois theory for simple rings.

Let R be a simple ring with the center Z and let there be given a finite

(10) =Einreihig. See G. Kdthe, Verallgemeinerte Abelsche Gruppe mit hypetkom-
plexem Operatorring, Math. Zeitschr. 39 (1934); K. Asano, Uber verailgemeinerte Abelsche
Gruppen mit hyperkomplexem Operatorenring und ihre Anwendungen, Jap. Journ. Math.
15 (1939); T. Nakayama, Note on uni-serial and generalized uni-serial rings, Proc. Imp.
Acad. Tokyo, 16 (1940).

(11) Because a ring (with unit element and satisfying the minimum conditions for
left and right ideals) is uni-serial if and only if every two-sided ideal of it is principal.
Cf. Asano 1. c. Satz 1, 2 and 13.

(12) Cf. Asano, 1. c. Satz 17.
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group of its outer automorphisms1® ® = {1, o, ..., }. Then we can construct,
as usual, a crossed product (R, ®) as follows:
R, ©) = Zo:o e R, so U = Yo, Xha =Us %° (xeR),

where uy, %o, ...... , u: are linearly independent over R. Identifying each xe
R with uxe 4, R, 1 being the identity automorphism, we may assume that
R is a subring of (R, ®). Now we can readily verify

Lemma 2. 1) Every RR-two-sided-module Rus =) s R is simple.

2) usR and uR are operator-isomorphic, as R-R-two-sided-module, if and on-
Iy if (a7-! is inner and hence) ¢ = .

Owing to this lemma we have

Theorem 4. 1) (R, ®) is a simple ring.

2) Every subring of (R, ®) containing R is expressed as (R, ©) by a sui-
table subgroup © of © and hence also simple.

3) The commuter rving of R in (R, ®) coincides with the center Z of R.

Proof. Lemma 2 implies that every non-zero R-R-two-sided submodule of
(R, ®) is of the form (R, ) = Zo:p #s R for a suitable non-empty subset $ of
®. But (R, ) forms a ring if and only if $ is closed under multiplication,
that is, © forms, since ® is a finite group, a subgroup of ®; while (R, 9)
forms an ideal of (R, ®) if and only if © = ®. Thus 2), 1) are proved. For
3), take an arbitrary commut.r Zoe #s ao (do ¢ R) of R in (R, ©). Then Zs us
s X= X Do Uo o = g Us X° G whence as x = x° as for every ce® and xeR.
The latter equality implies that, if we associate with each #s~!x the element
as x we have an operator-homomorphism between #s~ 1R and a.® for each
oe®. But since every uo~ 1R is simple by Lemma 2, this homomorphism is
necessarily an isomorphism, and 4% 0; this implies however that ¢ is inner
whence = 1, because agxas~! = x° for every xe®R, and we have Z;u; dq =
aje ZW

Now we prove

Theovem 5. Let R be a simple ving und let & be a finite group of its outer
automorphisms. Then :

1) The S—invariant subring G159 of R is simple.

2) © is the totality of automorphisms of R which leave invariant every
element of ©.10

(13) We mean that all the automorphisms in & except the identity are outer.

(14) Above arguments also remain valid when a factor set is introduced.

(15) We mean that & is the subring consisting of all elements of ® which remain
invariant under every automorphism in ®.

(16) This is a somewhat more general assertion than the corresponding Jacobson’s
result.
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3) R possesses a linearly independent basis over & and has the same vank
over R as the ovder of ® (on both left-and right-hand sides): [R:8] = (G :1).4D

4) The commuter ring Vu(©) of © in R coincides with the center Z of R,
and hence the centey of © is @ Z.18

5) Every simple subring of R containing S is, for a suitable subgroup 9 of
©, the S-invariant subring of R.

Proof. Let ¥ be, as in the proof of Theorem 3, an absolute endomorph-
ism ring of R. We may assume then that R is a subring of ¥U; the com-
muter ring V(R) = R’ of R is inverse-isomorphic with R and VR) =R, R
R=Z

Furthermore © is naturally looked upon as a group of outer automor-
phisms of ® Regarding every automorphism ¢ in @ as an absolute endo-
morphism of ® we get readily xo = ox° for every xeR(=U). Therefore,
if we associate with every X, us e (R, ®) the element Z,0x,¢ U, we
obtain a homomorphism between (R, ®) and the subring R:6 = (R, R, . v
TR) of A. But since (R, ©) is simple by Theorem 4, this homomorphism is
necessarily an isomorphism and we may assume (R, ©) = R:6 (=R + oR +
...+t R). Similarly, since x'6 = o(x"° for every 6¢®, x'¢R’, we have also
&, ®) = R'-6 (see Jacobson 1. c.).

Now, as is readily seen, the ®-invariant subring & of R is identical with
R-VO) = VR)_V(®) = VR, 6): 8 = VR, ). Hence Theorem 1 implies
that 9 is simple as well as V(6) = (R, ). On the other hand, since (R’, ®)
possesses a linearly independent basis 1, o, ..., 7 over R, R = VR’) does the
same over & = VR, ©) and [R:6] =[R', &): R']=(6:1) on account of
Theorem 2. Take next an arbitrary automorphism p of % under which
every element of & remains invariant. Then p can be extended, in
virtue of Theorem 2, to an inner automorphism «— u#-lau of %; since
every element of & is invariant under p, # lies necessarily in V(&) = (%', ®).
From R = VIR) and #- 1R u = R, it follows #- R'u = R'ie R u=uR. uR’
is therefore a simple R'-R'-two-sided submodule of (R, ®) and hence, on
account of Lemma 2, # R = u,R for a suitable 6¢®. This implies the exis-
tence of a regular element ¢ e R’ = V(R) such that # = u,c; consequently we
have p = 9¢®. These prove 1), 2) and 3). 4) follows from Vg ©) = V(©) ~
R = R, 6)~VR) and Theorem 4, 3). As to 5), let T be any siinple subring
of ¢ containing ©. Then the commuter ring V(Z) lies between V(8) = (®,

(17) By using this, we can prove moreover the existence of a normal basis of ®
over © in the similar way as in T. Nakayama, Normal basis of a quasi-field, Proc. Imp.
Acad. Tokyo, 16 (1941).

(18) This is shown in Jacobson, . c. only in a special case.
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®) and V®R) = R’ and so we have, according to Theorem 4, V() = R’, 9)
for a suitable subgroup 9 of ®. Thus € = V(V(®)) = VR, ) = RV(I). is
the $-invariant subring of R.

Remark 1. Since K = ~Z is the center of ® by Theorem 5, 4), &:Z
(=9%) is direct over K and is simple, according to the Noether-Kurosh’s
theorem. And the subgroup of ® belonging to it consists obviously of all
automorphisms in ® which leave invariant every element of Z.

Remark 2. Let &) be the quasifield belonging to &. Then we may as-
sume that dvere exists a system of matrix units {ej; ¢, =1, 2, ..., s} (s =
[&]) in & such that &, is their commuter ring in & whence & = X e¢;; S,
Let further R, be the commuter ring of {e;} in R whence R = .Ze;jRy. Then
R, is simple and, since all e¢;(e R) are G-invariant, ® is condidered essentially
as a group of outer automorphisms of R, and indeed the G-invariant subring
of R, is S,.



