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61. New loundation of the Theoor of Simple Ring.

By Gor6 AzuAYA.
Mathematical Institute, Nagoya Imperial University.

(Comm. by T. TAEAGI, M.b.A., Dec. 12, 1946.)

Beautiful theory of simple rings and their subrings has been developed
mainly by Brauer, Noether and Albert.l> ,lacobson has recently succeeded in

obtaining further the Galois theory for quasi fields.12

Under a certain new idea we want in the present paper to re-establish
and .generalize these theories. Our basic methodl31 used in the whole
consists principally in the fact that if % is a simple ring (i.e. a matrix;

ring over a quasi-field) and a finite -module then the 9-endomorphism
ring * of is also simple, is finite with respect to R* and R is consid-

ered conversely as an e*-endomorphism ring of ; further to every auto-
morphism o R there belongs at least one seni-linear transformation of .
This, together with other related theorems, is discussed in 1. After these
preparations we are able to give in 2 a euite natural and direct

proof to the well-known fundamental theorem for simple ring. In some

(1) See R. Brauer, (ber Syseme hyperkomptexer Zahlen, Math. Zeitschr. 0(1929);
E. Neother, Nichtkommutaive Algebra, Math. Zeitschr. 39 (1933); M. Deuring, Algebren,
Ergebn. Math. 4 (1935); A.A. Albert, Stucture of Algebras, New York (1939).

(2) N. Jacobson, The fundamental theorem of Galois theory for quasi-fields, Ann.
Math. 41 (1940).

3) I is perhaps of some interest o compare our method with those hitherto given.
Brauer first used the algebraic closure of coefficient field. Noether built the theory on
her beautiful theory o1 representations in quasi-fields; the difficulties in separability
were so removed and the. theory was extended from algebras to rings. Embedding the
algebra into matrix algebra over the ground fi’eld, Weyl and Brauer avoided the repre-
sentation theory in quasi-fields, though were restricted again to algebras and the theory
was not fully expounded; a complete derivation of the theory along this line was given
in a noe by Kawada-Oi (Zenkoku-Shij6-Sugaku-Danwakai 162). The similar effect was
accomplshed in Albert’s method by forming the direct product with an inverse-isomor-
phic algebra; a similar approach was given independently also by Chevalley and Naka-
yama in their seminary in Pinceton, as the vrter has been informed. Or method is

however to characterize the simple ring as a subring of an absolute endomorphism ing

(of a cera’in module). If we restrict ourselves to algebras then our method is more or
less similar to those of Weyl-Brauer and Albert. But our absolute endomorphism ring
enables us,. no only it is much more natural and direc.er than the matrix ring over
the ground field, to built the theory in a far mare general case. Indeed Nakayama, to
whom also the present work owes useful remarks, has found that our method is parti-

cularly of use in his study of "irreducible nngs." (The theory will be reported shortly
in these proceedings as well as in a joint paper with Nakayama and the writer.)
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points, we are led to refined results. The same method enables us moreover,
in 3, to extend Jacobson’s Galois theory to the case of simple rings to ob-
tain that, given a simple ring 9 and a finite group 5 of its outer automor-
phisms, there exists a one-to-one correspondence, in the usual manner, be-

tween subgroups of and simple subrings of 9 containing all @-invariant
elements of

1. Right modul of a simp!e ring.

Let be a module. The totality t of all endomorphisms of forms
an (associative) ring with identity element i.e. the abso!ute endomorphism

ri.,z4 of . Suppose there be given a right operator-ring e of . Then

every right-sided nmltiplication of element a of induces in an absolute
endomorphism a (e 1) and by means of the mapping a- a R is homomor-
phically carried upon a subring ’t of . The O-endomorphism ring of St is

nothing but the commuter ring V() of O in I. Let us say tha is closed

with respect to g if V (V())= 0, that is, if O is identical with the V (R)-
endomorphism ring of

Iemma 1. Let be a (finite or infinite) direct sum of R-submoduli

(I AI) such that there exists one m0 to. which every nb, is Ol-homomorphic. If
.further n:o is closed with respect to Of’, then l is also so.

Proof. Let ,V (0) be, for each /, M, an extention of an -holnomor-
phism between mo and nt" mo/=., and take in particuiai" 0 to be idempo-

tent. Then /0V (g)/o is, as uual looked upon as an Ot-endomorphism ring
of too. Consider an arbitrary V(l)-endomorphism tz of lll’a, V (V(O)).
Since -’oa. /o 3ia0 Z-n0, a induces in t:’,o an oV(Ol)0-endomorphism.
Hence there exists, by our assumption, an element a for which uoa Uoa
holds for every u0 m0. Further we have (Uo ") z (Uoa) 2 (Uoa) ,= (u0/) a
for eacl /z M and consequently t a.. This completes the proof.

Now let. g be a sinp!e ring (with unit element and satisfying the mini-
mum condition for right ideals). Then it is well known that is isomorphic
to a matrix ring of a certain dimension, say r, over an up-to-isomorphism
uniquely determined quasi-field St: Ol (St),., which we shall call the quasi-

field belonging to (the simple ring) Ol; the matrix degree r is also uniquely
determined and shall be denoted by [gJ. Simple right ideals of Ol are all
operator-isomorphic and Ol is the direct sum of r simple right ideals. The
operator-en.omorphism quasi-field t’ of a simple-right ideal is inverse-
isomorphic with St and Ol is considered conversely as a St’-endomorphism
ring of , that is, , is closed with respect to

(4) We consider I as a right-hand multiplication domain of
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Consider next an -right-molule on which the unit element of
operates as the identity endomorphism. Then is as is well known, the

(finite or infinite) direct sum of simple submoduli operator-isomorphic to
the simple right ideal of R. In virtue of Lemma 1, t is therefore closed
with respect to . The (cardinal number of direct summands is independ-

ent of the direct decompositi01x which we shall denote by t]R]. The
behavior of , as -right-module, is determined by [R] ]. If in part cul-
ar [[ ] is finite, then R-endomorphsm ring N* of is isomorphic to

the ! ]-dimensional matrix ring over " and [RI *] ].(s These
facts we may describe as follows"

Theorem 1. Let t be the absolute.endomorphism ring of a module ad

let there be given a simple subring R of containing the identity element

of I. Then"

1) v(v()) .
2) If is a simple subring of isomohic with R such that [l ]

[$t Ot], then any isomorphism between and- can be extended to an inner
automorphsm of I.

3) In case [ R] is finite, V(OI) is also a simple ring; the quasi-field be-
longing to it is inverse-isomorphic to that of R and moreover

As is easy to see, possesses a (right-) linearly indetendent basis over R
if and only if lot R] is divisible by [R]6) and, if this is the ease. the nurn
bet of elements constituting the basis is equal to [ g]/[R, which we shall
call the (right-sided) rank of $ over g and denote by [" R].

Theorem 2. Let , 9.I, R be as in Theorem 1. Given moreover a simple
subring of Ot containing the unit element of R such that [Ri ] is finite.
Then

1) Any isomorphism 9 of t into which maps upon itself ( )
can be extended to an inner automorzOhism of I.

2) When [ fit] is finite, the relatio of V((R)) and V(Ot) is the same as that

of and and there holds [0t *] [V0t)] [V()I V(t)] []; in particular
Ot tossesses a right-linearly independent basis over if and only if V() has
the same over V() and we have, in this case, [g" ] [V()" V(t)].

Proof. 1) follows readily from Theorem 1, 2), because [ R][t ]

(5) For let 1 e + e. + +er be the decomposition of the unit element 1 of
iato mutually orhogonal primitive idCmpotent elements e, e., er (r--[R]). Then

et + e + + er and, since R is the 9’-endornorphism ring of , each
is, as R’-module, directly indecomposable. But, since R/ is simple and hence every
module is completely reducible, each 9te is necessarily simple; this implies [t

(6 Of course, this is the case when [t ]] is infinite.
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[fir (R)J [fir 9t ][rv 6] and [rv 6] is finite, where r denotes a simple

right ideal of 9.

21) From [fiR l] []=[15] and []=[] IriS], it follows
[l ] [l ] [] [l[ e]. But since [l[ ] [V()] and [[] IV
()] by Theorem 1, we have nearily [[ ] [V()] [] [V()]. As [fir
V{)] [] whence [V() V)] is finite, we have, by replacing , by

V(), V)respectively, the simiiar relation [V() V)] [] [V()] [].
Comparison of these two relations gives our desired relation

[v() v()] [].
2. The fundamental theorem for simple rings.

Theorem 3.() Let be a simle ring ith the center Z and et e a

simple subalgera of omer Z (such that [’ZJ is #nite). Then"

1) The commuter ring Vm() of in is also simple and the quasi-field

belonging to it is the same as that of the direct product (constructed
omer Z), where ’ is inmerse-isomorphic ith .

2) The commuter ring V(V()) o V,)) coincides ith
V(V ()) .>

) possesses a le/t- etl a right- linearly independent bis omer

Vm () and the rank of over Vm () is equal to that of omer Z (in oth

left-and rigi,t-ha sides)" [" Vt ($)] [’ZJ
4) An isomorpMsm of into leaig inmariant ever element of Z

can e extended to an inner automorphism of .
5) The product . Vm () (constructed inside ) is direct, omer the common

center K V() of and V(); it coincides moreover with the commuter
ring V(K) of K in ().

Proof. Consider the absolute endomorphism ring of (the module)
We may regd as a subring of 2. The operator-endorphism ring V)

of the -right-module is, the totality o left multiplications of and
hence inverse-isomorphic uith and V(’)=. Now .’ is, by Noether-
Kurosh’s theorem,() direct over Z=’dis also simple; moreover[ x R’]

(7) Cf. Noether, 1. c. 5; Deuring, 1. c. IV, {} 4; Albert, I. c. IV.
(8) These three results were proved hitherto only when 91 is a (finite dimensional)

simple algebra over Z.
(9) Neother, 1. c. {} 4, Erweiterungssatz; Kurosh showed, however, that this Noe-

thefts theorem remains still valid in the case when A is a two-sided simple ring with
unit element (but not necessarily satisfying the minimum condition for right ideals) and
S is even infinite over the center P of A: see A. Kurosh, Direct decompositions of simple
rings, Recueil Math. 53 (1942). Under Noether-Kurosh’s theorem we shall therefore un-
derstand this general form. From this theorem it follows, as is pointed out to me by
Nakayama, that if A and S are contained in a certain over-ring in which A and S are
element-wise commutative then the product A.S of A and S is direct over P =A.S-- A

S; observe that S (whence A x S) need not be two-sided simple.
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is finite, because [911 91,] [91] is so.

Since then Vm() V$) 91 V ($) V(9 V($ x ), we have o
aerfion t) immaly from Theorem 1, 3). Fther, Tor 1, 1) im-

pli Vm(Vm$)) V(V( x ’) ($ x ’) V() $ this proves 2). 3) follows

from Theorem 2, 2), since every linearly independent basis of $ over Z is at

the same time at of x’ ov ’; the existence of a left bis follows
by the left-right symmetry. For 4), is uquely extended, in the natal

ma, to isomorphism betwn Sx’ and x’ leafing init
every element of ’. Theorem 2, 1) implies then that ere exists a

regular (=inrsible) element c in V’) ch that c-xc for every
$. The first half of 5) is also an immolate consequen of the Noether-

Kurosh’s theorem. The sond half fotiows readily from [: Vm(][$. Vm
() Vm()] [K: Z] [$ :K] [$: ZJ [: Vut ()J, ,according to 3), and $.

($) v(.
Let now be a primar2 ing (with chain condition). The is, as is

well known, isomorphic with a matrix ing over a completely prim ring

and hence for any primitive idempoten element e of the (dktly inde

composable) ight idea e is los with pect m . t us assume

thermoe that is uni-seri.(o) Then every -ight-module is, according
to the fundamental theorem for uni-seial rings, a direr sum ef submoduli
all opeator-homomorphic to e; fthe if is faithful (wirpt to ), then

thee must appea at least one direr summand which is oto-imophic

to e. Thee two facts enables us, in virtue o Lemma 1, to genalize

Theorem 1, 1)to ou uni-sedal ing . Obseing further that the
product of a normal simple ing and a uni-sial algebra is, on acunt

the Noether-Kosh’s theorem, also uni-seial,(n) we can pove in the simil

way as Theorem 3, 2)
Theorem 3’.() Let be a simple ring with the center Z and let be a

uni-serial subalgebra of over Z. Then Vg(V()) .
3. Galois theory for simple rings.

Let be a smple ring with the center Z and let there be given a ite

(10) =Einreihig. See G. KSthe, Verallgemeineree Abelsche Gruppe mit hyperkom-
plexem Operatorring, Math. Zeieschr. 39 (1934) K. Asano, Ober verallgemeinerte Abelsche
Gruppen mit hyperkornplexem Operatorenring und ihre Anwendungen, Jap. Journ. Math.
15 (1939); T. Nakayama, Note on uni-serial and generalized uni-serial rings, Proc. Imp.
Acad. Tokyo, 16 (1940).

(11) Because a ring (with unit element and satisfying the minimum conditions for
left and right ideals) is uni-serial if and only if every two-sided ideal of it is principal.
Cf. Asano 1. c. Satz 1, 2 and 13.

(12) Cf. Asano, 1. c. Satz 17.
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group of its outer automorphismsC13) 0 {1, a, r}. Then we can construct,

as usual, a crossed product (R, (R)) as follows:
(, ) o, u, uo u, u,, xu u (x, ),

where u,
with ux, u 1 berg the identi automohism, we may assume that
is a subring of (, *). Now we c readily verify

Lemma 2, 1) Every --t-sided-dule (u, =)u is simple.

2) u, and u, are operator-isorphic, . --two-sided-dule, if and on-

ly if (a -Owing to this lemma we ve
Theorem 4. 1) (, O) is a simple ring.

2) Eve subring of (, O) containing is expressed as (, ) by a sui-

table subgroup of and hence also simple.

3) The commuter ring of
Proof. mma 2 impli that every non-zo --two-sid submodule of

(, O) is of the fo (, )= ,.: u for a suitable non-em#y subset of. But (, ) foms a ring if and only if is closed und multiplication,

that is, forms, sie

forms an ideal of (, ) if and only if O. Thus 2), 1) e prove. For
3), take an bicommut,zr

ao x= x uo ao
The latter equality impli that, if we aciate with each uo-Xx the element

a, x we have an operator-homomorphism between uo- d ao for each

a O.. But since every uo- is simple by Lemma 2, this homomohism is

necearily an isomorphism, and a* 0; this implies however that a is inner

whence 1, because aox ao- x for every x e, and we have o u, aa
al e Z.(14)

Now we prove

Theem 5. Let be a simple ring and let be a finite group of its outer

automorphisms. Then"

1) The -invariant subring ls) of is simple.

2) is the totality of automorphisn of which leave .invariant every

element of

(13) We mean that all the automorphisms in 61 except the identiy are outer.

(14) Above arguments also remain valid when a factor set is introduced.

(15) We mean that is the subring consisting of all elements of which remain

invariant under every automorphism in @.

(16) Thi is a somewhat more general assertion than the corresponding Jacobson’s
result.



No, 11.] New Foundation of the Theory of Simple Rings. 331

3) possesses a linearly independent basis over and has the same rank
over as the order of 0 (on both left-and right-hand sides)" [’J

) The commuter ring V() of in coincides with the center Z of
and hence the center of is Z.t

5) Every simple subring of t containing (R) is, for a suitable subgroup of
O, the -invariant subring of .

Proof. Let t be, as in the proof of Theorem 3, an absolute endomorph-
ism ring of . We may assume then that is a subring of I; the com-
muter ring V()= ’ of is inverse-isomorphic with and V’)
=Z.

Furthermore 5 is naturally looked upon as a group of outer automor-
phims of Regarding every automorphism a iu as an absolute endo-
morphism of t we get readily x a a xo for every s ( t). Therefore,
if we associate with every ’o uoxo (, 5) the element Xoaxo "I, we

obtain a homomorphism between (, O) and the subring .0 (, a:, ...,
v ) of . But since (, O) is simple by Theorem 4, this homomorphism is

necessarily an isomorphism and we may assume (, )= ..O (= + o +
+r ). Similarly, since xa a (x’)" for every a O, x’ ’, we have also

(’, )= 91’. (see Jacobsoh 1. c.).
Now, as is readily seen, the O-invariant subring of is identical with

V() V’)V((R))= V(’, 5)" V(’, ). Hence Theorem 1 implies

that is simple as well as V() (-’, ). On the other hand, since (’,
possesses a linearly independent basis 1, a v over t’, V(’) does the

same over V(’, O) and [’] [(’, )" ’] (’1) on account of

Theorem 2. Take next an arbitrary automorphism p of under which

every element of (R) remains invariant. Then p can be extended, in

virtue of Theorem 2, to an inner automorphism a- u-au of ; since

every element of is invariant under p, u lies necessarily in V()---(!IV, O).
From ’ V() and u- u , it follows u-t’u ’ i. e. ’
is therefore a simple ’-’wo-sided submodule of (’, 6) and hence, on

account of Lemma 2, u ’= uo for a suitable a 6. This implies the exis-

tence of a regular element c s= V() such that u uo c; consequently we

have p o . These prove 1), 2) and 3). 4) follows from V()= V()
(’, O),-V(’) and Theorem 4, 3). As to 5), let : be any sitnple subring

of containing (R). The the commuter ring V() lies between V()-=-(t’,

(17) By using this, we can prove moreover the existence of a normal basis of R
over @ in the similar way as in T. Nakayama, Normal basis of a quasi-field, Proc. Imp.
Acad. Tokyo, 16 (1941).

(18) This is shown in Jacobson, 1. c. only in a special case.
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) and V(9) t’ and so we have, according to Theorem 4, V() (t’, )
for a suitable subgroup # of . Thus ;- V(V())= V(t’, )--tV(). is

the -invariant subring of t.
Remark 1. Since K ,-,Z is the center of by Theorem 5, 4), .Z

(t) is direct over K and is simple, accordin$ to the Noether.Kurosh’s
theorem. And the subgroup of belonging to it consists obviously of all

automorphisms in @ which leave invariant every element of Z.
Remark 2. Let $0 be the quasi-field belonging to $. Then we may as-

sume that ere exists a system of matrix units {e.; i, .j 1, 2 s) (s
[]) in such that $0 is their commuter ring in whence $ e# $i0.

Let further 90 be the commuter ring of {eij i-n whence t =.eijgo. Then
t0 is simple and, since all eijf R) are 5-invariant, 5 is considered essentially

as a group o outer automorphisms of t0 and indeed the @-invariant subring

of to is o.


