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57. On the Infinitesimal Deformations of Curves
in the Spaces with Linear Connection.

By Kentaro Yano, Kazuo TakaNo, and Yasuro TOMONAGA.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M. 1. A, Nov. 12, 1946.)

§0. Introduction.

Since T. Levi-Civital? has published his famous paper on the geodesic de-
viation, the theory of infinitesimal deformations of the curves was studied
by T. Boggio, E. Bortolotti, E. Cartan, U. Crudeli, E. T. Davies, L. P. Eisen-
hart, A. De Mira Fernandes, H. A. Hayden, V. Hlavaty, M. S. Knebelman, A.
J. McConnell, O. Onicescu, J. A. Schouten, J. L. Synge, G. Vranceanu and
others. The theory of infinitesimal deformations of curves was then genera-
lized to that of subspaces by E. Bortolotti, E. Cartan, E. T. Davies, H. A.
Hayden, A. J. McConnell, J. A. Schouten, A. G. Walker, C. G. Weatherburn,
K. Yano and others. Recently, the theory of infinitesimal deformations of the
space itself was studied by N. Coburn, D. v. Dantzig, E. T. Davies, P. Dienes,
L. P. Eisenhart, E. R. van Kampen, M. S. Knebelman, A. J. McConnell, J. A.
Schouten, W. Slebodzinski, K. Yano and others.

One of the present authors®@ has recently developed a geometrical theory
of infinitesimal deformations and studied especially the deformations of sub-
spaces imbedded in a space with linear connection.

In the present paper, we shall apply these methods, those of the above
mentionned authors and that of K. Yano, to the study of the infinitesimal
deformations of curves, particularly, of geodesics, affine conics, projective
conics, geodesic circles and conformal circles. We shall state here only the
results, the full detail will be published elsewhere.

§1. The definition of the operator 4.

Let us consider a space of » dimensions with an affine connection I‘,‘..,. A
curve in the space being represented by the equations of the form 2! = % (¥),
where ¢ is an arbitrary parameter, we shall consider the infinitesimal defor-
mation
11 P@ =@+ 8@ ou.

(1) T. Levi-Civita: Sur l'écart géodésique. Math. Ann., 97 (1926), 291-320.
(2) K. Yano: Sur la théorie des déformations infinitésimales. To appear in the
Journal of the Faculty of Science, Imperial University of Tokyo.
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of the curve, where ¢ is the parameter of the deformed curve and &) is
a contravariant vector field defined along the original curve, d# being an in-
finitesimal constant.

If we consider a contravariant vector field v¥(f) defined with respect to
the curve x? () and the parameter {——for example, the vector field 22 () may
be the tangent vector %x—:-, -— we have, after the infinitesimal deformation
(1.1), a contravariant vector field v* () defined with respect to the deformed
curve x* (f) and the new parameter £. The vectors »* (£) and ¢! () being de-
fined at the point 2! (£) and 2% (?) respectively, we transport parallelly
the vector 21 from the point x* (f) to the infinitesimally near point 2 (),
obtaining

*Af) = 0 (f) — I‘fwv“ & ou
at the point #* (f). Putting
12 Aot = BB —*A @) = A B — A @) + D™ & o,
we shall call it the d~variation of the vector »* with respect to & .
For the d-variation of the parameter, we put

1.3) 44t = dt — dt,
from which we obtain

: dt _ 44t at _ . dadt
(1.4) 7 =1+ af and a =1 ar

Strictly speaking, the vectors #* () and *u? () are defined at the point ¥(%)
and not at the original point x! ($), and consequently the J-variation 4 ?
is a vector at the point x (§). To obtain the vectors at the original point
x* (), we transport parallelly these vectors from # (¢) back to x?(¢), obtain-
ing

*¥dvr) = *pr () — vt (D).

But the vectors ¥({d4?) and 4v* coincide in the order of approximation
of the first order, thus we have
(1.5) * (§) = 2 (§) + ot
at the original point.

If we have a tensor field defined at every point of the space, its 4-varia-

tion will be the covariant derivative in the direction 8 multiplied by the in-
finitesimal constant du.

(3) H. A. Hayden: Deformations of a curve, in a Riemannian n-space, which dis-
place certain vectors parallelly at each point. Proc. London Math. Soc., 32 (1931), 321-
836.

J. A. Schouten and E. R. van Kampen: Beitrige zur Theorie der Deformation.
Prace Mat. Fiz., 41 (1933), 1-19.
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§2. The definition of the operator D.

In this Paragraph, we shall consider an infinitesimal deformation
21 =2+ 8 (1) 0u,
which displaces every point of the space to an infinitesimally near point of
the space.

If we have a curve »® = 2% (f) in the space, then, this curve will be, by
the infinitesimal deformation (2.1), transformed into the curve

22 WO =2 @)+ & (x@) ou.
Consider a vector »* () defined with respect to the Qgiginal curve and the
parameter ¢ —— for example the covariant derivative —"—d—tr of the tangent

vector —‘fi’t‘i The point ! {{) on the curve being transported to the point
2% (¢) given by (2.2), the point x* (£} + v () 6v on the vector will be transpor-
ted to the point
2+ R (D) 00 + 8 (x-+002) 00) 0w = 2 +0A (B) v + &4 (2) S + 4 0 Su do,
where dv is an infinitesimal constant and the comma denotes the ordinary
differentiation. Thus, we can consider that the vector v% = [( +22 6v) — 2 ]
+0v is dragged from the point 4! to the nearby point i## anhd gives
A () = {[x* +02 (£) Gv + E (%+v (£) 0v) Ou] — [o2 + €2 du]} [ O

= o (O+EA (&) .
Thus, we obtain two vectors v (¢) and ‘o? () at the point »¢. Putting
@23) DR = () — R () = A () — R () — EX0» Our,

we shall call it the D-variation of the vector »* with respect to §* .9
For the D-variation of the parameter #, we put

2.4) Ddt = dt — dt,
from which we obtain

dt _ Dadt 4 . Da
2.5) G- 1 —I--————dt and a = 1 3

The wectors v* () and ‘v? (f) and consequently D ¢* being the vectors at
the deformed point i?, to obtain the vectors at the original point &%, we
have only to dragg back these vectors from the point i?to the point »*,
obtaining

(26) Do) =" @) — ot @),
or
@7 B (@) = oA () + Do

to the order of our approximation.

(4) K. Yano, loc. cit. See (2).
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If we have a tensor field, for exmple Tfl,w, the D-variation of the tensor
will be given by the formulae
28) DThu =[Thw, 08" — T o+ The €% + Thu €11 0n,
or, in the tensor form,
29) DTh = [Tl — Tl a4+ Thw €4 + Tha &3] 64,
where
(2.10) Ea=tle+ S,
and the semi-colon denotes the covariant differentiation with respect'to the
affine connection I"fw.
The operation D is sometimes called the Lie derivative. It will be applied
also to an affine connection F:,u, giving
211) DIh, =[&%, o+ Thow8” —Thfte +T% &y +Thob] 0,
or, in tensor form,
(212) D= [ + e £ 1000
§3. The fundamental formulae for the opevator 4.
We shall consider, in this Paragraph, the commutator operator 4—;- dt —
ai —=—4 ot the operator 4 and the operator v denoting the covariant
differentiation along the curve, that is to say,

G.1) RUSH R A

After some calculatlon, we have®

P) o dx _ oot dat
2 4-g-ot— 5 Mot = R‘,W.,v“ § ou— - 5,

where R' pve denotes the curvature tensor formed with I“fw. These formulae

will be fundamental for the following discussion.
$4. The fundamental formulae for the operator D.

dt

If we calculate the similar expression D ,,z —~ Dyt as above, we
obtain® "
o 4 __ 0t Dat
@1 D gt — Dot = (DT, ) o G dt ~aF Tat

which will be alco fundamental for the following discussion.
§5. The d-variations of the successive covariant derivatives of the tangent
vector.

Let us consider a curve x* = #* () and its infinitesimal deformation (1.1).

(5) K. Yano: Bemerkungen zur infinitesimalen Deformationen eines Raumes. Proc.
Imp. Acad. Tokyo, 21 (1945), 171-178.

(6) H. A. Hayden: loc. cit. See (3).

(7) E. T. Davies: On the infinitesimal deformation of a space. Annali di Mat., 12
(1933-1934), 145-151.
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Then, applying the d-operator to the tangent vector %’—?«, we obtain
7]

6n 42 (B A o A2 A

The 4-variation of the tangent vector being thus obtained, to obtain the
d-variation of the covariant derivative of the tangent vector, we put v* -——%T
in (3.2) and substitute (5.1), then we obtain

2t ) 4 dxt pu 1 Ox dav
6 455 -[2 3 S )+ R 22 22 2 4
—_9 % Adt  dxt d ddt
ag dt dt dt dt °

The d-variation of the acceleration vector being thus obtained, to obtain
the d-variation of the second covariant derivative of the tangent vector, we
put @ = %—;—‘;— in (3 2) and substitute (5.2), then we find

Bt o8 dxr s é 1 dar dx e
63 4252 ( + S S )+T(R-,mu e
1 02 dx‘ 03t Addt 02t d ddt
+ Repe G e] =3 @ S ar @ ai
__ax a2 Adt
di df dt -

Continuing in this way, we can find the d-variation of the successive cova-
riant derivatives of the tangent vector by the recurrence formulae

daxt I de-1x 1 fa-lxn dx" Y o St Adt
6 dga =g 4 gt + Rwe—gmr gy & 04— g

§6. The D-variations of the successive covariant derivatives of the tangent
vecior.

The calculation analogous to that of the preceding Paragraph will give
the D-variations of the successive covariant derivatives of the tangent vector
as follows:

dit _ d+t Ddt
6D D—Gr=—"g “a >
dxr dxv 0% Ddt dxt d Dat
©2) D—5m dtz—(DF:"’) d di Tl aE @ Tl dldt
dxt dx’ dx® Oxr dav dxr 0%
©3) DI - orin. G L 8 2 orin GG + orn G- T
—3 08x2  Ddt _3 22 d Ddt  dx* d* Ddt
aB  dt det  dt dt dat diz dt
the recurrence formulae being

LR 0 oe de-lxr dar 0t Ddi
©64) Do =g D g1 dt“‘l + (D TGt g — g

§7. The d-variations of the normals and curvatures in the deformation of a
curve in a Riemannian space.
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Let us consider an #-dimensional Riemannian space V, whose fundamen-
tal form is ds® = gu. dx*dxv and a curve x! = x! (s) in the space, s being the
arc length of the curve. Then, the formulae of Frenet and Serret may be
written as

2 2
7.1 —éi— Nwy= — K@a-1 Ye-1 + K@ 77?a+ 1,
(a = 1, 2; cens B35 Kio) = K(n) = 0)
where 77?1), ’7(12), s 776.) are the unit tangent, the first normal, ..., the (n-1)-st

normal of the curve and kw, K@, ..., Kx-1 are the first, the second, ..., the
(n-1)-st curvature of the curve respectively.

Now, we consider an infinitesimal deformation
(7.2) () = 24 () + &4 (s) bu
of the curve. The ds being transformed into ds, if we put dds = ds—ds,
we find

4
@.3) P ads 2 ou.

To obtain the d-variation of the unit tangent vector 7(1), we put —;— d —= 77(1)
and ¢ = s in (5.1), then we find

79 gy = %ii o — 7 g 2 92 5

To obtain the 4-variation Amz; of the first normal vector 77(12), we put vt
=77<11) and ¢ = s in (3.2) and substitute *gs*%” = IC(IW%Z), then we find

(7.5) :c(ndqu = %— 4 7{1)) + R e iyt € 0u — [dkw + Icu)-%%s-] 7]'(12).

Remembering guw 7{» %2 = 1 and consequently guw.(47() 7% = 0 (dguw =0),
we have, from (7.5),

(76) dekw = gw gs A 7t 7 + Rigwe 77?2) 7t 70 &7 du — k) Adsis ,
which gives the 4-variation 4 k) of the first curvature Kq).

To obtain the 4-variation 4 77(3) of the second normal vector 77(3), we put
v = 77(2) and ¢ =s in (3.2), and substltute 7 (z> =—Kmn7 (1)+ £2) 7(3), then
we obtain .
(7)) ke Ayl = - 76 + Kk ) + Ryl 70 6% 0u

— [J K@ + K@ —— 4 d ] 7@ + [AK.a) + K ~A—d—] 70,

from which

78 dro = gu —38— (&) 7 + K guw (A7) 73 + Rig 7 7 byt €% ou

— K@ Adfs ’

by virtue of the identity gu. (47{) 9 = 0.
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Proceding in this manner, we can find the 4-variation of the a-th normal
/) (1¢+l) : s ] .
(7.9) IC(a)A ?7%4:4-]) = -d—s— 4 731)) + K(a-1) 4 Na-1 + R%p.w V(a)vrl) 6"' ou

4
—[A K(a) + K(a) Adfs] 7 (la+1) + [A K@-1 + K@-1 Fds]vfa-n,
and the d4-variation of the «-th curvature:
(7.10) dkw@ = guw —gs— (A7) asd + Kia-1 Zukd 7la-1) Tasd + R Yo

x gty 906" 6u — I(:(m)—‘-,‘—l-‘—;di .

These formulae were found by A. J. McConnell.®
§$8. The D-variations of the normals and curvatures in the deformation of a
curve in a Riemannian space.

If we consider, in an »-dimensional Riemannian space, an infinitesimal
deformation x* = a* + £4 (x) 6u of the space, a curve x(s) will be transfor-
med into a curve # (5) = a2 (s) + &2 (x(s)) 0u, and we can try the study quite
analogous to that of the preceding Paragraph, replacing the 4-variation by

the D-variation, and we shall obtain the following results:
8.1 ‘Ddfs = ‘%“ D gu) 7]&) 7 ?1) = "‘21“‘ (ép.; v+ & w) 77&) 7 2’1) ou,

B2) val) = — 7]%13 sts’

8.3 km vam = % (Dﬂfn) + (Dﬂfu) 707 b — [DIC(n + Km *%gs"] vfz) ,

(84) Dro) = gw c;)s (Dply) 70 + (D T'fw) a7t 7 ) —K@ QTds

+ —%— Dgiw) 9t 7 (o,
8.5) k@D = 708——(D>7?z)) + Kk val’ + (Dl",fu) 770

- [D;c@) + K@ %%—] 7 &+ [D;cm + K@ %{] 7 .

(86) Dk = guw :ii (D) 7 + (DT 700 77 0 — Ko Z‘sls

+ —%— koDgw) &7 &,
s
8.7 IC(a)D?(?H—l) = _t(i‘; (Dﬂfa)) + Kw@-1 Dvl(lu- n+ (DI':-V) 77&) 7 71)

Dds
ds

88 Drw =gw —g; (DY) Jw+v + K1 gulDYla-1 Parn +(Df'ﬁu) Pat+ 12 70

1
— [Dn(a) + Ko ] Vi f‘u+ v +[ch<a-1) + K@-1 %ﬁi]v @-1,

(8) A. J. McConnell: The variation of curvatures in the deformation of a curve in
Riemanrian space. Proc. Irish Acad., 39 (1929-1930), 1-9.
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— K(a) %—gi + —%—lc(a)(Dg,w) Pa+1 7 (4D,
=12 ..,n—1.

§9. Parallel tangent deformation.

An infigitesimal deformation
9.1) (@) =@+ & () ou
which displaces the curve x*(f) into a curve x% (@) is said to be a parallel
tangent deformation® when the tangent vector of the original curve is al-
ways parallel, in the sense of the affine connection, to the tangent vector of
the deformed curve at the corresponding point. The necessary and suffci-
ent condition that the infinitesimal deformation (9.1) be a parallel tangent
deformation is that AL = —5—

dt ar r
©2) aez d o ) oy G5 ddt _ dd

+ S G ar at Y ar

If the 8‘ is a contravariant vector field, then we have

03  @urslee) b -pdn,
Moreover, if the infinitesimal deformation %' = x# + & (®) 0u is always
the parallel tangent deformation for any curve, then we have

(9.4) &t S = pon.
If we are in a Riemannian space, we have
(95) 81 506,4, or El = Q8.

Thus, in order that there exist an infinitesimal deformation of the space
which is a parallel tangent deformation for any cutve in a Riemannian space,
it is necessary and sufficient that the Riemannian space admit a concircular
transformation.(9
§10. Combescure transformation.

In a Riemannian space, if an infinitesimal deformation is such that
(10.1) Ay = Ayl = oo = A7l
it will be reffered as generalized Combescure transformation.(

For a generalized Combescure transformation, we have

7]
’)e ‘7?1) w3 (ifs 7 (1\

(10.2) Mpuw Py & ou— [A K@) + K@) A(;lss ] Y fern

+ [A‘Ic(a-l) 4 K(a—l)]%g‘ 7 fu—n =0,

(9) H. A. Hayden. loc. cit. See (3).

(10) K. Yano and T. Adati: Parallel tangent deformation, concircular transforma-
tion and concurrent vector field. Proc. Imp. Acad., Tokyo, 20 (1944), 123-127.

(11) H. A. Hayden, loc. cit. See (3).
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and

(10.3) dK@) + K@) A(;i: = Ra,mvfux) 7 wynéou

Thus, if any curve in the space admits a Combescure transformation in any
direction along the curve, we must have Riwe=0, and consequently the
space must be euclidean.? In this case the 4-variation of the curvature is
given by

(10.4) e + Kar TS = 0.

§11. Infinitesimal deformations which carry paths into paths.

In this Paragraph, we shall consider the necessary and sufficient condi-
tion that the infinitesimal deformation carry a path into a path. Such a
problem may be treated by the use of 4-variation and of D-variation.

() Method with the use of A-variation.
By the deﬁnition of the 4-variation, we have

S )

The path being defined by —5—

Theorem 1: A mnecessary and suﬁiczent condition that an infinitesimal defor-
mation 7 (5) x* () + &2 (s) Ou carry a path x* (s) into a path B (5) is

7
a2 405 (B8 4 R B A )y, A d M _

If we are in a Riemanhian space, A—varlatlon of the ds takes the form
Ads 08" dav
N B T
and hence the equations (11.2) become

v p
iy  DE R G e B S e,

which are equations of “I'écart géodésique” of T. Levi-Civita.(4)

Returning to the affinely connected space, if the infinitesimal deformation
which carries the path into path preserves the affine parameter, then we must
have 4 d‘f = ¢ = const. Thus

0 xx = 0, we have the

Theorem 2: A necessary and sufficient condition that the infinitesimal defor-
mation x* (s) = x* (s) + &2 (s) Ou tramsform a path into path and preserve the
affine parameter on the path is that

(114) ‘f;‘g + R B8 g,

(12) H. A. Hayden, loc. cit. See (3).
(13) The torsion tensor may be assumed to be zero tensor.
(14) T. Levi-Civita: loc. cit. See (1).
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Now, if the & is a contravariant vector field defined at each point of the
space, the equations (11.3) and (11.4) become

W5 Gt Rume) Ly, 42 4 1d
and
116)  Ep+ Runé™) 282 _
respectively. Thus we have the
Theorem 3: A necessary and sufficient condition that an infinitesimal defor-
mation B = xt + & (x) du carry cvery path of the space into puth is that
117 gu,u‘FRﬂwe’ ()p.?u’l'aﬁsﬂu’
where ¢y is an arbitrary covariant vector.

Such an infinitesimal transformation is called infinitesimal projective col-
lineation% of the affinely connected space.
Theorem 4 : A necessary and sufficient condition that an infinitesimal defor-
mation of the space carry every path of the space into path and preserve the
affine parameter on each paih is that
(11.8) el.'p;u+prw$'=0.

Such an infinitesimal deformation is called infinitesimal affine collinea-
tion of the affinely connected space.
(#5) Method with the use of D-variation.

We consider an infinitesimal deformation ' = a* + £ (x)du of the space.
By the definition of the D-variation, we have

&R &t 2t
a9 @ =& (&)
The path being defined by the equations 3—;% =0, we have the

Theorem 5: A necessary and sufficient condition that an infinitesimal de-
Sormation 3 = 2} + &2 (x) Ou carry a path into a path is

a1 DEE - priyde de _dd 4 Dds
G Rt £ A0 242 28

These equations coincide well with (11.5).
§12. Infinitesimal deformations which carry affine conics into affine conics.
An affine conic® in an affinely connected space is defined by the differ-
ential equations

(15) L. P. Eisenhart and M. S. Knebelman: Displacement in a geometry of paths
which carry path into path. Proc. Nat. Acad. Sci., U.8. A., 13 (1927), 38-42.

(16) K. Yano and K. Takano, Sur les coniques dans les espaces & connexion affine
ou projective, I, II. Proc. Imp. Acad. Tokyo, 20 (1944), 410-424.
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08 dxt

(12.1) o th =0,

where k is a constant and s is an affine parameter. In this Paragraph, we
shall consider the infinitesimal deformation which carry affne conics thus de-
fined into affine conics of the space.
(i) Method with the use of the d-variation.

By the definition of the 4-variation, we have

@ a(Therd)- (B3 l) H(D2 )
Thus,

Theorem 6: A wnecessary and sufficient condition that an infinitesimal defor-
mation carry an aﬁine conic into an affine conic is that

0%
(123) 4 v +k ds
- 0%t - 654 dxnr dxv & 2%t dx’ se] o
[ds“ +k— ds + —— dS (R;ww d.S )+R;¢uw d?—ifé ]ou

—3—%

2 d dds Adds a2z Adds
T ds T ds +‘a£(‘”*+2k g ) =o.

Theorem 7: A mecessary and sufficient condition that an infinitesimal de-
Sformation carry an affine conic into an affine conic and preserve the affine
Darameter on the affine com'c is that

2 yed v w
a2g [Z5+e %4 A (BB A ) RTE A e,

+ —dg— (dk + 2ke) = 0.

Now, we suppose that El is a contravariant vector field in the space, then
the equation (12 3) become

dx dxv Pz dx
(125) @ pw+ Rhunk™) o T2 L2 BT 4 9@, + RS 5 22

dxr 62 ox’l
ds ds T4 s2+ﬂ ds =0,

and the equat oas (12.4) takes the same form with « = 0.

From these equations we have the

Theorem 8: A mnecessary and sufficient condition that an infinitesimal
transformation of the space carry an arbitrary affine conic of the space info an
affine conic is that this infinitesimal transformation is a projective collineation.

Theorem 9 :00 A necessary and sufficient condition that an infinitesimal
transformation of the space carry an arbitrary affine conic of the space into an
affine conic and preserve the affine parameler on the curve is that the infinite-

"‘(Cy,u"‘Rl“uuq

(17) K. Yano and K. Takano: Quelques remarques sur les groupes de transforma-
tions dans les espaces & connexion linéaire, II. Proc. 22 (1946), 67-72.
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simal transformation is an affine collineation.
(#1) Method with the use of the D-variation.

By the definition of the D-variation, we have the

Theorem 10: A necessary and sufficient condition that an infinitesimal
deformation carry an affine conic into an affine conic is

(126) D %ﬁ; + 2

ds
_ dxr dxv dx® A 0%k dxv dxr %xv
= (DF:V):"‘E’S‘ s as T 2(DTw) T as T (Df'zu) s as
22 d Dds _di [ d Dds _,, Dds _ .\ _
~3% g ds ~as (s Tds — 2k TG —Dk)=0.

The equation (12.6) coincides well with the equations (12.5).
§13. Infinitesimal deformations which carry projective conics into projective
conics.

A projective conic and a projective parameter ¢ on it are defined by the
differential eqations of the form®

52
13D % ({8, s} + o + T ‘ld’;—;‘i‘axsi =0,
3344 A
(132) Ptz 5+ @15 =,
where
@t a |\
_ 48 3| ds’ _ o dw dw
{t’ 5}’_ _‘_i_t_ 2 i ’ a°—1"2., ds ds’
ds ds
rg” == _n-_ﬁ_l__f (7 Ry + Ry,

R, being the contracted curvature tensor. We shall consider the infinitesimal
deformations of these projective conics.
(i) Method with the use of the 4-variation.

By the definition of the 4-variation, we have the
Theorem 11: A necessary and sufficient condition that an infinitesimal defor-
mation carry a projective conic and preserve the projective parameter on them
is that

(133) 4 [‘2143“ (6 ) + @iyt 00 ]

wods T ds
. d_Ads & Ads
== @At s +30) - T T s
d_ dxt dx’ e, 0 0" dw dxe 08" o
+ds (”7@'“7; B &+ TG G+ T G )

(18) K. Yano and K. Takano: loc. cit. See (16).
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0 0% dx" o 0% dx? dxr da
+(I‘,wu s 5"-!—1",;‘, g ds +I'¢3R,w~ s W-d?g‘
0 02xr 08"
+ Mg )5

and
(13.9) A[d3 + @, s}+a0)‘-’£‘—]

08¢4 dxr dx“
[ s B (R 7 8 )

+R‘,w..82"" d"" g ] ou +(P,L.,. dw dv o, | po Xk dr

“ds ds ds ds
dxl‘ 65" ast 022 d  Ads dit d2 dds _
T Th Gy e ) e w8 e A 8 e e S = 0.
When El are functions of #*, we have, from (13.4),
(135) (5 p,uu+Rp.uw a.s +R1p,ua.$4~> x”' de:' ‘%x; 5%
v 2 41
+ 2850 + Rt )6;3"; 9 Su +(€‘,.U+RW., )d"" ’iis"z ou
0 v 0 o o dxt dxv dat b‘le d dds
+(P‘LI),’~:§ +Fau$;p,+ FME;V) ds ‘78—‘_“—“5 —dgz‘w ds

i d® dds
=3 % ds as = O

If we assume that the infinitesimal deformation x* = a? + §2 (x) 0w of the
space carries the projective conics into projective conics and preserve the
projective parameters on them, we have, from (13.5),

(13.6) 51;;:.;;: + R/}‘Luu & = 5;11, ¢v + aﬁ Pu»
from which
137 Iﬁu;ue" + I 2u$:'ly. + Iﬁae,a v = Qu;v.

Conversely, if the vector §* satisfies the condition (13.6), it will be easily
shown that the equations (13.3) and (13.4) are identically satisfied, and we
have the
Theorem 12: A necessary and sufficient condition that an infinitesimal defor-
nation of the space carry all the projective comics into pyojective conics and
Dreserve the projective parameters on them is that the deformation is a projec-
e collineation.

@) Method with the use of D-varia ion.

By the definition of D-variation, we have the
Theorem 13: A necessary and sufficient condition that an infinitesimal defor-
mation of the space 3 = xt + &2 (x) du carry all the projective conics into pro-
Jective conics and preserve the projective pavameler on them is that we have

d 0 0Zxr dav
(138) D [73— (t, 8} +a) + T S -as—]
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Dds d® Dds
@l ) 3 G G~ s
dxr dx” o 0%xr dxv Dds o dxt 6’x» Dds
[(DT','L,) ds ds Tmards as v A s ]5“

o2y dxv dxr dx® dx*
+(Dr"‘) ds* ds +(I",.u)\Dl",,...) ds ds ds 0

and

31
(13.9) D[" e+ @ s + ) ds]
_ dxr dx dxe 0% dx“ dxr 0%
—-(Dry,u>; L) '78" ~J§_ ds + 2(Dmu + (Dl",w) ds d32
0« dxar dxP i 2 d Dds dx* d? Dds
~ DI GG 3G d ds 3 as &
These equations coincide well with (13.5).
§14. Infinitesimal deformations which carry Riemannian circles into Rie-
mannian circles.
Riemannian circles are defined by the differential equations of the form

%t dx? 2%t 02xY
14D TG + k2 F- =0, where K= gu"jg s

We shall coasider the infinitesimal deformations of these curves in Rie-
manmian space.

By the definition of the 4-variation, we have the
Theorem 14 : A necessary and sufficient condition that an infinitesimal de-
formation 3 (S) = 2 (s) + g (s) 0u carry a Riemannian circle into a Rieman-
nian circle is that1%

w2 4(GE + et )

a3k o 0% dxﬂ' dx" £ 0%t dxv e
[dss + ds (R Ve Ty )+ R cpuw ds_ ds
—3° % (aw ds2 ds T8 s dst )]
S35H = 2 4
d£ Kk dK+3k2gu (2‘; d;sv O — g Gz d;; ou — 2 guw qaigﬁd:scz 5“)
=0,
the d-variation of K being giwven by
_ o%* dxr dxv pe 028 0%
(144) «kdk= [g st + Rnp.vw ds ds” s '—d——;“"ZIC MV d82 ds ]8

If we assume that.¢é? are functions of the coordinates, then we can apply
either the method with the use of 4-variation or the method with the use
of D-variation and prove the following

(19) J. L. Synge: The displacement or deviation of circles in Riemannia space.
Proc. Irish Acad., 39 (1929-1930), 10-20.
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Theorem 15: A necessary and sufficient condition that an infinitesimal trans-
Sformation of the space carry any Riemannian civcle of the space into a Rie-
mannian circle is that transformation is an infinitesimal concircular trans-
Sformation, @ that is to say, the vector gt defining the transformation satisfy
(14.9) v +6un =28 g0 and B = Pguw.
§15. Infinitesimal deformations which carry conformal circles into conformal
circles.

Conformal circles?V in a Riemannian space and the projective parameter
on them are defined by the differential equations of the form
15D {8 = % Lu Px _ po,do dr

8w gGsT dst ds ds
a3 0%xr % dxt o dxt dxv dxt_ Aody
(15.2) as T ge g g ~ e s as YT g =0
where
o _ _  Ruw 8wk =
e B T YTy R L

We shall study the infitesimal deformations of these curves.

By the definition of the 4-variation, wé have the
Theorem 16: A necessary and sufficient condition that an infinitesimal de-
Jormation 2 (s) = A (s) + £4 (s) 6u carvy a conformal circle into a conformal
civcle and preserve the projective parameter on it is that

52 v
as3) 4t s) ~ e TB P di dv

. dast dst ds “ds
=[_ & de KNP Lo dwe dw 06 di
8w G ds 8w gt st B ds ds 8 ds ds
5&" ix“ 524:'0' a dxt dxv e\ 023
+38Tw G G — e (G + R G G )

+ 2 g (z—f;- %’;;g,w %i“— ‘stxﬂ_*, Thuiw —l%i %‘I— 5"} on=0
and

s N N Y
+ G (2o + 308 G- G — e g G —2ew G )

(20) K. Yano: Concircular geometry, I, II, III, IV, V. Proc. Imp. Acad., Tokyo, 16
(1940), 195-200, 354-360, 442-448, 505-511, 18,1942, 446-451.

(21) K. Yano: Sur la théorie des espaces a connexion conforme. Journal of the Fa-
culty of Science, Imperial University of Tokyo, 4(1939), 1-59.
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1-.” udxﬂ dx" g 98 d;\:’I Iﬁu 08" dx drt + 2I'ﬁ) dxr dxv

ds ds ds ds “ds ds
« 3¢ dx“zxj__p o dw (38 _an 3 dn
88705 "ds s wds ds \ds — ds 8 ds ds
+‘I'eoundxue +Fw08§s '—réov aﬁajs d;: (714—0]
where
O2ar 0240

(15.5) k%= 8w G gt

62 ] 8 o i v
(15.6) Kdk = [gaB ( das® + R. uuudgg d‘;: < 6?;;2 - 2lc‘gp.y % ’d_;%‘] on.

If we assume that 5'1 are functions of the coordinates, then we can app-
ly either the method with the use of 4-variation or that of D-variation and
prove the following.

Theorem 17 : In ovder that an infinitesimal deformation of a Riemannian
space carry any conformal circle into conformal circle, it is necessary and suf-
Jicient that the transformation is an infinitesimal conformal transformation,
that is to say, the vector g defining the deformation satisfy the equations?2
15.7) Epv + 6 =20 gu.

(22) K. Yano et Tomonaga: Quelques remarques sur les group:zs de transformations
dans les espaces & connexion linéaire, IV. Proc. 22 (1946), 173-83.



