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1. Let ba the family of analytic functions (z) which are regular and

sehlicht in the interior of the unit circle E: Izl <1 ad further are normalized

at the origin in such a way that F(0)=0,/r(0)--l. The theory of this family

has been developed by various methods. Among them, one based upon the so-

called Lhwner’s differential equation1) on bounded slit mapping of E has been,
especially first by Sovietie mathematioins G. M. Golusin, J. Basilewitseh etc.,

shown to be very fruitful. Let B be a bounded slit domairt obtained from w < 1

by cutting it along a Jordan are which lies in wl<l save an end-point and

does not pass through the origin. The mapping function

f(0)=e-’, of E onto B is then regarded as the integral f(z)----f(z, to) of the

so-called Lhwner’s differential equation.

(1.1) dr(z, t) =--f(z, t) 1 + (t)f(z, t) (O<t<t0)
Ot 1-(t)f(z, t)

with initial condition f(z, 0)=z, (t) being a continuous function weose absolute

value is identically equal to unity. Each function w=f(z, t), for which f(O, t)
0 and f(0, t) e-t, gives also a bounded slit mapping of E. Introduce now

a new family of sli mapping functions {h(z, t) (Otto) by functional relation

(1.) f()=h(f(, t), t).
Then the differenial equation for this family becomes

(1.3) dh(z, t) z-l + tc(t)z dh(z,,t) (tot:>_O)

with boundary conditions h(z, t0)=z and h(z, 0) =f(z).
Now, remembering the structure of Lhwner’s differential equation, we

expee tha analogous equations can be constructed in various ways from more

general poin of view. We consider, in general, a function o-F(z) which maps

3 onto a given simply connected domain D in the w.plae. Suppose hut a fmily

of simply connected domains {D} with a real parameter (0t0) be const-

ructed in such a way that Do and Dto coincide with the domains wl <21 and D

1) K. LSwner, Untersuchungen fiber schlichte konforme Abbildungen des Einheitskreises,
I. bl:ath. Ann. g9 (1923), 103-121.
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respectively. Let w=/’(z, t) be a function mapping E onto D,. If,. then,
.F(z, t) is differentiable with respect to the parameter t, a differential equation,

e. g., of the form

dF(z, t) --(t, z, F(z, t), F’(z, t)) (Otto)
t

may be expected, and its integral ’(z, to) with initial condition F(z, O)=z will

give a required mapping function F(z). And the construction of such a family

of domains will be possible with a large reedom of selection. The LSwner’s

equation is also regarded to belong to this category. From such a point of view,

Schaeffer and Spencer") have recently obtained a differential equation of this kind,
and shown its utility for coeiiicient problems of the family .

Now, the LSwner’s equation can be briefly derived by means of Poisson in-

tegral formula for analytic functions regular in ). This method is also shown

to be useful to obtain a Julia-Biernacki’s formula for variation of mapping Iunc-
tion caused by a variation of image-domain.4 In the present Note we shall show

that the Schaeier-Spencer’s equation can briefly be derived by means of the last-

mentioned formula, and turther will obtain a corrssponding result for conformal
mapping of doubly-connected domains.

2. If if(z) belongs to , so also does the function a-l.F(az) for a real

positive constant a less than unity, and the relation

lim a-lY(az)= Y(z)
a...1-0

holds in E uniformly in the wider sense. The image-domain of E by each map-

pirlg ’w-a-_l’(az) with 0<a< 1 always contains v--0 and is bounded by a

regular analytic and closed Jordan curve. Let be the sub-family o consist-

ng of all functions, each of which possesses such a smooth curve as the boundary

of its image-domain. The original family is a normal family, in which the

amily is everywhere dense. Hence, when the extremal problems in for

continuous fuactionals, such as distorsion or coeicient problems, are concerned, we

can restrict ourselves to its proper sub-family each member of which is regular

on the closed circular disc : ztl due to its analytic continuability, The

S;haeffer-Spencer’s results relates to , which states as ollows:

2) A. C. $chaeffer and D. C. Spencvr, The coefficients ot schlcht unctons, II. Duk

Mah. ]ourn. 12 (194), 107-125.
3) Y. Komatu, ber einon Satz yon Herrn LSwner. Prec. Imp. Acad. Tokyo 11 (1940),

512-/514.

4) See Y. Komatu, Sur la variation d’une fonetion do repr6sentation eonforme, lorsque

le domaine varie. Prec. Imp. Aead. Tokyo 1D (1943), 599--608 in which the detailed refe-
rences are contained.
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THEOREM 1. .Let .F(z) be a function in the family , and let et be any

positive numbm" g’eatm" than the maximum alue of (z) in E. Then
there is a family h(z t) defined fo" z E and Otto which satisfies the dif-
fe’ential equation

dt dz

with boundaq’y coditions h(z, t0)=z and h(z, O)=f(z)e-’OF(z). ttm’e
p(z, t) is fo" each t, an analytic function of z, vegulaq’ and with positive q’eal

pa’t in E and fuq’the" equal to l at z=O.

Pq’oof. We notice first of all, according to a theorem of Schwarz, that

.Ft(0), 6t or t0:>0. LetD be the image-domainof by the mapping

Then its boundary C is a regular analytic and closed Jordan curve, contained

in lv < 1 and enclosing the origin. Let he modulus of (doubly-connected)
ring domain between C and t =1 be lg (1/0)(>0) and denote by

a funration which maps ’0< ]z*! <: 1 anto this ring domain in such a manner

that :z* 1 and z* --t’0 correspond to w --1. and C respectively. It is well-

known that suctx a mapping is possible and is uniquely determined except a ro-

tation in the z*-plane abot the origin. Let C. be the image of ]z* --r

1) by this mapping; in particular, C, and C represent ust C and

respectively. We denote by

the mapping function of E onto the (bounded) domain & with boundary C,;
then we have, in particular,

(2.2) g(z, n)=f(z), g(z, 1)=z.
Let now o=g($, ’)( l) be any point on C, and put

All functions in question behave regularly even on tho boundaries of their respec-

tive domains. Hence, the perpendicular displacement from C. to C+. is given by

an infinitesimal quantity of order higlmr than tha of $" being neglected. Julia-

Biernacki’s formula then gives

@(z, Og(z, .+)-g(z, .)
(2.3) zg’(z, q’) r +z ;odo

(i+o(I)),
2r g -z "g’(,

the integral being taken round C,., as usual, in the positive sense and o(1) denot-
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ing a qualxtity which tends to zero with 3r in E uniformly in the wider sense. On

the other hand, as we have

do=g’($, q’)d := g’($, ’)iSdO ($-- e’)
and for ">0
the quantity

is always real-positive, and expresses the magnitude of perpendicular displaeemen

at . This fact is also seen by remebering that A, is contained, its bomldary

inclusive in tie interior of A,+. for 8’>0 and further See denotes an outward

displacement. Let u(z, ’) be a function regular in E whose real part possesses

the quantity $*RP($*)/@$gr($, ’)) as its boundary values. Then u(z, q’) is

positive throughout E and the function, itself is expressed by Poisson formula:

Comparing this with (2.3), we have

g(z, q’) =zg’(z, r)u(z, ’)(1+o(1))

and, making

Divide the last equation by z and put z=0. Then we have

=u(o,

the relation which can also be derived strictly by a method similar to the above

mentioned one which has given (2&). Now since, by (2.2), gr(0,
=e-’ and g(0, 1)=1, we get from (2.5)

But u(O, ,’) is always real-positiv% and so 9(0, ,’) is a continuously differontiable

function which varies as " varies from ’o to 1, monotone in the strict sense from

e- to 1; this monotony is also an immediate consequence from a Schwarz-

LindelSf’s theorem. Hence, the relation

d-=g’(O, f), t=to+ lg g’(O,
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defines a continuously differentiable function t=t(’) for ’or<=_l which increa-

ses strictly monotone with -. It is obvious that t(q’0)----O and t(1)=’t0. Now,
with this substitution of parameter, we put

(2.6) h(z,
dt

then, we get the reqired equation (2.1). Here p(z, t) is regular in/and further,
since u(z, v) is positive in E arid d/dt>O, it is of posiive real part in E. On

the other hand, the relation u(0, ’)=d lg gt(0, 9")]d’--dt]d" implies that

g Ct)
dt

Finally, from (2.6) we have

t0)--9(z,

and the proof of the theorem is completed.

The equation (2.1) appearing in the theorem just proved corresponds to

LSwner’s equation (1.3). In fact, the latter is obti’fined from (2.1) by putting

(l + (t)z)/(l-,(t)z) in place of/o(z, t), This particular function is regular,

of positive real part in E and equal to 1 at z:0; the only singular character is

that it possesses a pole (t) on zi -----1.

LSwner derived his oefficierit theorem Fro(0) I/3 !3 by making use of

(1.3). In this connection Schaeffer and Spencer have noticed that the same

result can also be derived by means of (2.1). Though they then have empha-

sized the utility of the equation (2.1), the function (1 + tcz)/(1--tcz) possesses

all characteristic properties of p(z, t) exoept only a singularity on tz ----! and

consequently the range of applicability of (2.1) will not be essentially wider than

ttxat of

3. For confficient problems, the eCluation (2.1) is often applied effectively.

But, as we have intention to discuss distorsion problems of iri a later paper,

we will derive here an analogous differential equation corresponding to (1.1).
THEOREM 2. Sup,pose that all the assumptions of the pq’eceding theo’en

a’e satisfied. Then the function f(z)e-F(z) is deter’mined as the teg’al

f(z)=f(z, to) of the die’ential equation

(3.1) df(z, t) =-f(z, t)k(z, t) (Ot<=to)
ot

5) K. Liiwner, loc. cir.
6) A. C. Schaeffer and D. C. Spencer, loc. cir.
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with initial condition f(z, O) z. Here k(z, t) is a function possessing the

properties as assigned above for p(z, t); more preeisely (z, t)=--p(f(z, .t), t).
t)’oof. Retaining the notations in the proof of the preceding theorem, as

w--h(z, t] maps E onto d,.(,), we may write here symbolically /r(--= h(E, t].
Let Dt be the domain which corresponds to D(,drt)) by this mapping, and hence

9=h(Do t).
Considering now D, to be. laid on the w-plane, tet the function mapping E onto
D, be

w=f(z, t) (f(O, t)=O, f (0, t)=-- gf (0, t)> 0).
Then Dt--f(E t), and so

D=h(f(E, t), t).
On the other hand, since D--f(E), we get, by the uniqueness theorem of map-

ping, the identical relation (1.2), i. e.

(3.2) f(z)=h(f(z, t), t).
In partieular for t-----0 and t=to, h(w, t) reduces to f(w) and to w respectively,

and hence

Therefore, we get

f()=h(f(, 0), o)=f(f(, 0))
---h(f(z, o), 0)=f(, o).

f(, o)-, j’(,

Now, by (3.2), for the function w:=f(z, t) it holds good the relation

0-- dh(v, t) d____V_ + dh(z, t)
dw ot dt

On the other hand, in the equation (2.1), writing w in place of z, we get

dt dw

The fmction h(w, t) being schlicht, dh/dw vanishes nowhere in Ivt < 1, and

hence by eliminating dh/dt from both equations above, we have finally the diffe-

rential equation

w ._-vp(o, t) (=f(z, t)).
dt

Since If(z, t) ,<1, the function

(3.3) k(z, t)---.p(f(z, t), t)
possesses the properes just mentioned above. This proves the theorem.

4. In a previous paper,) the present author has shown that the Julia-Bier-

7) Y. Komatu, loc. tit. 4)
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nacki’s formula can be generalhed to the case of doubly-connected domains. Cor-

responding to it, we shall generalhe, in t-he following lines, the above theorems

also to the case of .doubly-connected domains The results which will be obtained

correspond to those which the author has given as a generalization of LSwner’s
equations,s)

We take a concentric annular ring as standard (doubly-connected) ring do-

main. Let, on the v-plane, a ring domain D be given whose boundary is com-

posed of the circumference v] =1 and a simple closed curve C separating it

from the point at infitdty. Suppose, for the sake of brevity, that C is a regular

analytic curve. By normal family property this restriction is not essential for
extremal problems concerning continuous functionals. Let the modulus of D
be lg Q-l(0< Q<:I), and let a function

(4-.I) v=/(z’) (/(i) =i)
map i< z! < Q-’ schlicht onto D. If we take an annular ring i< [w <: Q"
containing D+ C, then the monotony of moduli implies Q0< Q. Let the modulus

of the ring domain between C and z =Q-’ be lg D;’(0<P0<) and the func-

tion mapping 1< ]z*] < p-i onto tills ring domain be

=/(z*) (R(P’) Q’).
For each io (R0_:_<lo__<l), let ir’ be the image of ]z*l --p- by this mapping, and

the modulus of the ring domain z/v between v 1 and/v be denoted by. ]g

By the monotony character of moduli it holds good Qo<__l<Q. Denote by

,=h(z, ) (h(l, )=i)
the function which maps 1< Izl < q-’ onto the last mentioned ring domain;
then we have in particular

(.2) h(, Q0)=, h(, )=/(z).
Our present object is to Obtain a differential equation for the family h(z, q) re-

garded as the function of the parameter q.
THEOREM 3. Thv family h(z, q) defined fo" i < z <- ad Qo

<Q as above satisfies the dim’ential euation

(.3) h(z, q) _-zL(z, q) h(z, )
c/lg / dz

vith bou,da’y condition,s (4.2) He,re L(z, q) is, fo" each q, a ’egula" autly-
tic function of z i 12 z.I <l- satisfyi,g the inequalities

(4.4) 2A(-’, q-’; q)..<=n(z, q)2A(’, q-’; q) (] z] --’),
vhe’e the function A(z, $; q) is givm, by

8) Y. Komatu, Untorsuchungen iiber konformo Abbildung yon zweifach zusammonh/ngoa-
don Gebioton. Prom Phys.-Math. Soc. Japan 2 (1934), 1-42.
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.function being that of Weierst’assian theory of elliptic functions with

,hi,tire periods 2 and 2i lg q-; V also de2ending on q.

P’oof. All functions in question are regular on the boundaries of their res-

pective domains. The quantif,y

increases sriofly monotone with q. We pug Fc=. g * be any poin

on z* =- and pug
R(*)==,(, ).

Then $* =-’, S C and =q-. Denote an inward normal displacement

a * by

P
then, the mapping being eonformN, here corresponds an inward norton dis-

Naeemeng on C given by

On the oher hand le 85 denote the corresponding displacement on the z-plane

flough i is also an inward normal displacement on ]z =q- ag the point

+ does no necessarily lie on z =(q+$q)-. But since

a=z,(e, )e= -z’(e, )e Ie I,
the variational uagion derNed in a previous paper") gives

h(z, q) oh(z, q) q
dq

)

ere an infinitesimal of higher order is of course, omitted and the integral is

ten round Co in the positive sense. Bub as has been shown in the above cited

9ar we have

and hence

9) Loc. cir. 4)
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. lg z

Now putting q-eo we obtain

a quantity which is real-negive. As SqO we ge

I1 ,,’(,.q) /

and finally by using

It is cily slown that A(z, ; q) is expanded in infinite series of tle form

and hcnce, puti z=’d(1<’< q-) and =q-e, we get

A.(ro’,, q-,e,o, q)=.. 9"( )cos n(O-).
Since q< rq< J,as shown I)reviously,

0-- and decreases, as 8-- varies rom 0 o , monotane in the strict sense;
tints we have in particular

A(-r, q-’;q)A(re’, q-’e’; q)A(r, q-’; q).
On the otler hand, since

we have a relation

dS-

Hence, if we define tltc function L(z, ) by the uation (4.3), he inequalities

(4.4) hold got for ]fis function. This proves he heorem.
5. The abovc mentioned theorem 2 can also be generalized in quie silar

anncr. Thc result may be sated as follows:

TtlEOREM 4. U,deq" the same assumptions as in the preious theorem,
the function f(z) is deteq’mined as the integq’al f(z)=f(z, Qo) of the differen.

10) Loc. cir. s)
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tial equation
8 lgf(z, q) K(z, q) (Q>=qQo)

vith initial condition f(z, )=, K(,z, ) big dned by
(5.2) KCz, q)=L(f(z, q), q).

Pq’oof. The argument is quite similar as that of the proof of theorem 2.

We have, i faot, only to consider the amily f(z, q) defined by the relation

f(z)=h(f(z, q), q),
for which the relations (5.1) and (5.2) are almost immediate consequences of


