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1. Let & be the family of analytic functions F'(z) which are regular and
schlicht in the interior of the unit circle £: |z| <1 and further are normalized
at the origin in such a way that F(0)=0, F'(0)=1, The theory of this family
has been developed by various methods, Among them, one based upon the so-
called Lowner’s differential equation® on bounded slit mapping of E has been,
especially first by Sovietic mathematicians G. M. Golusin, J. Basilewitsch etc.,
shown to be very fruitful. Let B be a bounded slit domain obtained from |w | <1
by cutting it along a Jordan arc which lies in lwi <1 save an end-point and
does not pass through the origin. The mapping function w=f(z), f(0)=0,
J/(0)=e", of K onto B is then regarded as the integral f(z)=f(z, &) of the
so-called Lowner’s differential equation .
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with initial condition f(z, 0) =12, ¥(¢) being a continuons function weose absolute
value is identically equal to unity. Each function w,=f(z, t), for which f(0, )
=0 and f'(0, t)=¢7?, gives also a bounded slit mapping of E. Introduce now
a new family of slit mapping functions {h(z, t)}(0=t=<t,) by functional relation

(1.2) J()=1(f(z 1), ).
Then the differential equation for this family becomes
dh(z, t) 1+ ()2 Jh(z,t)
1.3 ? 7 = 2 t=t=0
(13) gt 1—w(De oz (h=t20)

with boundary conditions h(z, &)=2 and h(z, 0)=f(2).

Now, remembering the structure of Lowner’s differeutial equation, we may
expect that analogous equations can be constructed in various ways from more
general point of view. We consider, in general, a function w= F(z) which maps
E onto a given simply connected domain D in the w-plane. Suppose that a family
of simply connected domains {D,} with a real paramecter ¢ (0=t=<¢,) be const-

ructed in such a way that D, and D,, coincide with the domains |w | <1 and I)

1) K. Lowner, Untersuchungen liber schlichte konforme Abbildungen des Einheitskreises,
I. Math. Ann. 89 (1923), 103-121,
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respectively, Let w=F(z, t) be a function mapping I onto D, If, then,
F(z,t) is differentiable with respect to the parameter ¢, a differential equation,
e. g, of the form

dF(d_zt»Q =(t, 2, F(z, 1), F'(z, 1)) (O=t=t)

may be expected, and its integral F(z, ¢,) with initial condition F(z, 0)=2 will
give a required mapping function F(z). And the construction of such a family
of domains will be possible with a large freedom of selection, The Lwner’s
equation is also regarded to belong to this category. From such a point of view,
Schaeffer and Spencer® have recently obtained a differential equation of this kind,
and shown its utility for coefficient problems of the family &.

Now, the Lowner’s equation can be briefly derived by means of Poisson in-
tegral formula for analytic functions regular in £®. This method is also shown
to be useful to obtain a Julia-Biernacki’s formula for variation of mapping func-
tion caused by a variation of image-domain. In the present Note we shall show
that the Schaefler-Spencer’s equation can briefly be derived by means of the last-
mentioned formula, and further will obtain a corrssponding result for conformal
mapping of doubly-connected domains.

2. If F(z) belongs to &, so also does the function a~'F(az) for any real
positive constant « less than unity, and the relation

e}_i)lil}ooz‘]F(nzz) =F(z)

holds in E uniformly in the wider sense. The image-domain of E by each map-
ping w=a""F(az) with 0<a<1 always contains w=0 and is bounded by a
regular analytic and closed Jordan curve. Let 9 be the sub-family of & consist-
ing of all functions, each of which possesses such a smooth curve as the boundary
of its image-domain, The original family & is a normal family, in which the
family 9 is everywhere dense. Hence, when the extremal problems in & for
continuous functionals, such ag distorsion or coefficient problems, are concerned, we
can restrict ourselves to its proper sub-family 9 each member of which is regular
on the closed circular disc E': |2z]| =<1 due to its analytic continuability. The
Schaeffer-Spencer’s results relates to U, which states as follows:

2) A. C. Schaeffer and D. C. Spencer, The coefficients of schlicht functions, II. Duke
Math. Journ. 12 (1945), 107-125.

3) Y. Komatu, Uber einen Satz von Herrmn Ldwner. Proc. Imp. Acad. Tokyo 16 (1940),
512-514.

4) See Y. Komatu, Sur la variation d’une fonction de représentation conforme, lorsque
le domaine varie. Proc, Imp. Acad. Tokyo 19 (1943), 599-608 in which the detailed refe-
rences are contained.
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THEOREM 1. Let F(z) be a function in the family A, and let ¢ be any
positive number greater than the mazimum value of ' F(z)| in E'. Then
there is a family h(z, t) defined for z€ E and 0=t=\t, which satisfies the dif-
Jerential equation

oh(z, t)

Tzzp(z, t)

oh(z, t)

9z
with boundary conditions h(z, t,)=z and h(z, 0)=f(z)=e"F(z). Here
p(z, t) is for each t, an analytic function of z, regular and with positive real
part i E and further equal to 1 at 2=0.

Proof. We notice first of all, according to a theorem of Schwarz, that 1
=F'(0)<e®ort,>0. Let.D be the image-domainof £ by the mapping w=f(z),
Then its boundary C is a regular analytic and closed Jordan curve, contained
in [w| <1 and enclosing the origin. Let the modulus of (doubly-connected)
ring domain between C and | w| =1 be lg (1/r,)( >0) and denote by w= R(z*)
a function which maps 7,< |2*| <1 onto this ring domain in such a manner
that ' 2* | =1 and | 2*¥ | =7, correspond to | w ! =1. and C respectively. It is well-
known that such a mapping is possible and is uniquely determined except a ro-
tation in the z*-plane about the origin. Let C, be the image of | 2* | =r (¢, <
=1) by this mapping; in particular, C,, and C; represent just C and | w| =1
respectively, 'We denote by

w=g(s)  (900,)=0, (0, N=-2L(0,1)>0)

the mapping function of E onto the (bounded) domain 4, with boundary O,;
then we have, in particular,
(2.2) 9z, 1) =J(2), 9(z 1) =2
Let now o=g(&, +)(| §] =1) be any point on C,, and put
¥ =R (w), [EF | =,
All functions in question behave regularly even on the boundaries of their respec-
tive domains. Hence, the perpendicular displacement from C, to C,,s. is given by

Sw=RI(E%)88 = B! (&%)
9

or,

an infinitesimal quantity of order higher than that of 8 being neglected. Julia-
Biernacki’s formula then gives

89(27 ?')Eg(z, r+ 8"’)"‘9(73) )

(2.3) _ 29'(z 1) E+z dwdw
2 &—z Eg(& )

the integral being taken round C,, as usual, in the positive sense and 0(1) denot-

1+0(1)),



4 Y. KoMATU. [Vol. 25,

ing a quantity which tends to zero with & in K uniformly in the wider sense. On
the other hand, as we have
do=g'(§, r)dE=g'(&, v)iéd0 (6=¢%)
and for 8r>0
Sw=g'(&, r)88=g'(&, v)§|8¢],
the quantity
1 Sw de — EXRI(E)or
i &g, 1) do r&g'(§, 1)
is always real-positive, and expresses the magnitude of perpendicular displacement
at & This fact is also seen by remebering that 4, is contained, its boundary
inclusive in the interior of 4,.,s for 8r>0 and further 8w denotes an outward
displacement. Let u(z, 7) be a function regular in 2 whose real part possesses
the quantity §*R/(E*)/(vEg’(€, r)) as its boundary values. Then Rpu(z, r) is
positive throughout I and the function itself is expressed by Poisson formulas
1 (™ &4z EFRI(E*
W 1) = Qor of E—z 9“89'((5, 'r)) @0 (€=
1 f E+z Sewdw )
2wy 4 E—z  S&(§, v)
Comparing this with (2.3), we have

=[ 8]

89({:,._";)_ =2g'(z, "u(z, r)(L+0(1))
"

and, making &0,

(2.4) dg(2, ) =2z, ) dy(z, 1) .
dar daz

Divide the last equation by z and put z=0. Then we have
!
(25) 271 —u(0, 139/, 13

the relation which can also be derived strictly by a method similar to the above
mentioned one which has given (2.4). Now since, by (2.2), ¢’(0, 7)=f"(0)
=¢™% and ¢'(0, 1)=1, we get from (2.5)

70, 7) =exp< —to+ f ru(O, 7) dfr) =exp f u(0, r)dr.
70 1

But ©(0, r) is always real-positive, and so ¢(0, 7) is a continuously differentiable
function which varies, as » varies from 7, to 1, monotone in the strict sense from
e~ to 1; this monotony is also an immediate consequence from a Schwarz-
Lindelof’s theorem. Hence, the relation

¢h=g'(0,r), t=h+lgg'(0,7)
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defines a continuously differentiable function ¢=1¢(r) for r,<r=<1 which increa-
ses strictly monotone with v. It is obvious that #(v)=0 and #(1)=%. Now,
with this substitution of parameter, we put

(26)  h(z O=g(z (D), p(z O=ulz *“@D“—“drg) ’

then, we get the reqired equation (2.1). Here p(z, t) is regular in J and further,
since fu(z, r) is positive in K and dr/dt>0, it is of positive real part in F. On
the other hand, the relation (0, v)=d Ig ¢’(0, )/dr=dt/dr implies that

p(0, D=u(0, r())- 1.

Finally, from (2.6) we have

h(z, t)=g(z, (L)) =g(z 1) =2,
h(z, 0)=g(z, r(0))=g(z, 1) =f(),
and the proof of the theorem is completed.

The equation (2.1) appearing in the theorem just proved corresponds to
Lowner’s equation (1.3). In fact, the latter is obtained from (2.1) by putting
(L+£(£)2)/(1—«(t)z) in place of p(z, t). This particular function is regular,
of positive real part in I and equal to 1 at z=0Q; the only singular character is
that it possesses a pole x(¢) on |z | =1.

Lowner™ derived his coefficient theorcm | F/(0) | /313 by making use of
(1.3). In this connection Schaefler and Spencer® have noticed that the same
result can also be derived by means of (2.1). Though they then have empha-
sized the utility of the equation (2.1), the function (1+ x2)/(1—«z) possesses
all characteristic properties of p(z, ) except only a singularity on | z| =1 and
consequently the range of applicability of (2.1) will not be essentially wider than
that of (1.3).

3. For confficient problems, the equation (2.1) is often applied effectively.
But, as we have intention to discuss distorsion problems of @ in a later paper,
we will derive here an analogous differential equation corresponding to (L.1).

THEOREM 2. Suppose that all the assumptions of the preceding theorem
are satisfied. Then the function f(z)=¢"" F(z) is determined as the integral
J(2)=f(z, 1) of the differential equation

(3.1) ﬁf—(-z;——t)—:-—f(z, k(2 1) (0=i<t)

5) K. Loéwner, loc. cit.
6) A. C. Schaeffer and D. C. Spencer, loc. cit.
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with initial condition f(z, 0)=2. Here k(z,t) is a function possessing the

properties as assigned above for p(z, £); more precisely k(z, £)=p(f(z, 1), t).
Proof. Retaining the notations in the proof of the preceding theorem, as

w=h(z,t) maps E onto d,u, we may write here symbolically 4,.,=h(E, t).

Let D, be the domain which corresponds to D( < 4,,) by this mapping,and hence

D=h(D,, t).
Considering now D, to be laid on the #-plane, let the function mapping L' onto
D, be

w=f(s 0 (#c0,0=0,7 0, =-"L0,>0).

¢z
Then D,=f(E, t), and so
D=L(f(E, t), t).
On the other hand, since D=f(E), we get, by the uniqueness theorem of map-
ping, the identical relation (1.2), i. e
(3.2) J(2)=h(f(z ), O).
In particular, for =0 and t=#¢, h(w, t) reduces to f(w) and to w respectively,
and hence
J(2)=h(f(z 0), 0)=F(f(z, 0))
=0(f(z, 0, &) =f(z, to)
Therefore, we get
J(z, 0)=¢, Sz, 6)=f(2).
Now, by (8.2), for the function w=f(z, ¢) it holds good the relation
0= oh(w, t) oJw 4 dh(w, t) i
Jw ot at

On the other hand, in the equation (2.1), writing w in place of z, we get

oh(w, t) __ Ip(w, t)
— wp(w, t)mdw .

The function 2(w, t) being schlicht, dh/dw vanishes nowhere in |w| <1, and
hence by eliminating dh/dt from both equations above, we have finally the diffe-
rential equation

O —up(u, ) (w=fCs D).
Since | f(z, )| <1, the function
(3.3) k(z, ) =p(f(z D), )

possesses the properties just mentioned above, This proves the theorem.
4. 1In a previous paper,” the present author has shown that the Julia-Bier-

7) Y. Komatu, loc. cit.
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nacki’s formula can be generalized to the case of doubly-connected domains, Cor-
responding to it, we shall generalize, in the following lines, the above theorems
also to the case of doubly-connected domains The results which will be obtained
correspond to those which the author has given as a generalization of Lowner’s
equations.”

‘We take a concentric annular ring as standard (doubly-connected) ring do-
main. Let, on the w-plane, a ring domain D be given whose boundary is com-
posed of the circumference |w| =1 and a simple closed curve C separating it
from the point at infinity., Suppose, for the sake of brevity, that C is a regular
analytic curve. By normal family property this restriction is not essential for
extremal problems concerning continuous functionals. ILet the modulus of D
be Ig @'(0< Q@ <1), and let a function

(41) w=F(2) (F=1)
map 1< | z{ <@ schlicht onto D. If we take an annular ring 1< |w| < Q5"
containing D+ C, then the monotony of moduli implies @, < Q. Let the modulus
of the ring domain between C and | w| =Q;" be lg Py'(0<.Py<1) and the func-
tion mapping 1< | 2* | < P; onto this ring domain be

w=R(z*) (R(P7DH=Q).
For each p (Ry=p=1), let I', be the image of | z* | =p~' by this mapping, and
the modulus of the ring domain 4, between | w | =1 and I",, be denoted by Ig ¢~".
By the monotony character of moduli it holds good @,<<¢=<<Q. Denote by
w=h(z, ¢) (1, 9 =1)

the function which maps 1< |z| <¢™' onto the last mentioned ring domain;
then we have in particular

(4.2) h(z, Q) =z, h(z, Q)=f(2).
Our present object is to obtain a differential equation for the family h(z, ¢) re-
garded as the function of the parameter g.

THEOREM 3. The family h(z, q) defined for 1< |z| <q™' and Qu=gq
=Q as above satisfies the differential equation

(4.3) Iz Q) —2I(z, @) Ih(z, q)
dlgg dz

with boundary conditions (4.2) Here L(z, q) s, for each ¢, a regular analy-
tic function of z in 1< | z| <q~' satisfying the inequalities

(44)  2RAC—r, s DSRIC D=2RACr, 75 ) (|2] =),
where the function A(z, §; ¢) s given by

8) Y. Komatu, Untersuchungen iiber konforme Abbildung von zweifach zusammenhéngen-~
den Gebieten. Proc. Phys.-Math. Soc. Japan 25 (1934), 1-42.
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(4.5) A(z §; q):“—_-lf-(é'(@' g2 ;) —CC lg.—]i-- ; q)) — Mg,
4 3 § T

C-function being that of Weierstrassian theory of elliptic functions with pri-
mitive periods 2ar and 2i1g ¢~'; 9y also depending on q.
Proof. All functions in question are regular on the boundaries of their res-

R <h(-~, q)) |

increases strictly monotone with ¢.  We put Iy, ==C,. Let §* be any point
on |z%*|=p~" and put

pective domains. The quantity

p=p(g)=

R(&*)=w=L(§, ¢).
Then | §*| =p~', w € C, and | | =¢~". Denote an inward normal displacement
at &% by

8% = ——»-Sp t= — E¥p=18p;
p

then, the mapping being conformal, there corresponds an inward normal dis-
placement on C, given hy

8w = R'(§*)86* = — RI(§*)&E*p~'8p.
On the other hand, let 8§ denote the corresponding displacement on the z-plane;
though it is also an inward normal displacement on |z|=¢~" at &, the point
&+ 8¢ does not necessarily lic on |z| =(g¢+8¢)~". But since

Sw=1'(&, q¢)8=—1"(§, ¢)¢¢|8¢|,
the variational equation, derived in a previous paper,” gives

Sh(z, q) = 9Nz, @) 8¢
9q

=~z q){mf (C(ug—~,q> ~CCils L)) e

&', ¢)*
__._2_771_1& .8_9_}
r q ’

here an infinitesimal of higher order is, of course, omitted and the integral is
taken round C, in the positive sense. But, as has been shown in the above cited

- Swdw
27”-/‘52 L' (&, q)°

paper, we have

and hence

9) Loc. cit, ®
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a0 )= 22 ) f 2 ) ~CCi )

gz ) Swdw )
T EN(E, ¢)
Now, putting §=¢~"¢*’, we obtain
Swdw____—I(&, g)gf | 38| W'(E, iEd0 __15e | gg
&0/ (€, ¢)* &1 (E, q)*

a quantity which is real-negative. As 8¢—>0, we get

Mg g _ RI(ENEpT8p | R(EDHE ()
Slggq ) q W'(E, ¢)68¢ 1(E, )¢

and finally, by using the definition (4.5),

oz q) AW (7 V_gRCEDEPTP' (@) 40,
T . ,f & & O e

It is easily shown that A(z, §; ¢) is expanded in infinite series of the form

A% & D=2 2"“1‘(5;‘-+—9-%f" )

n=11 2

and hencee, putting z=re*(1<r<¢™") and §=¢"¢", we got

RACr*, 7, ) =311 qo,, (———})os (60— ).

Since g <<rq <1, as shown previously,'” the last quantity is an even function of
f— and dccreases, as @ —g varies from O to 7, monotone in the strict sense;
thus we have in particular

RAC—r, ¢ Q=R A(re*, ¢7'6"; O=RA(r, ¢7'; .
On the other hand, since

1 Swdw q ("5
B g 2mi ~f A CADE 271'(;[ 8¢ 46,

we have a relation
[TABETD D gpsr,
v W(E @€
Hene, it we define the function L(z, ¢) by the equation (4.3), the inequalities
(4.4) hold good for this function. This proves the theorem.
5. The above mentioned theorem 2 can also be generalized in quite similar

manner, The result may be stated as follows:
THEOREM 4. Under the same assumptions as in the previous theorem,
the function f(z) is determined as the integral f(z)=f(z, Q,) of the differen-

10) Loc cit.
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tial equation

I1ef(z ) _ -
(.1 J18g K(z ¢ (@=¢=Q)
with initial condition f(z, @)=z, K(z, q) being defined by
(5.2) K(z, 9)=L(f(z’ q}’ Q)'

Proof. The argument is quite similar as that of the proof of theorem 2.
We have, in fact, only to consider the family f(z, ¢) defined by the relation
F&D=h(fCz, @, 9.
for which the relations (5.1) and (5.2) are almost immediate consequences of

(4.3).



