No. 2.] 65

16. On the Simple Extension of a Space with
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By Kiiti MORITA.

Tokyo University of Education.
(Comm. by K. KuNUGI, M.J.A., Feb. 12, 1951.)

In the present and the next notes we shall develop a general
theory concerning the simple extension of a space with respect to
a uniformity. As special cases we obtain various topological ex-
tensions of spaces such as completions of uniform spaces in the
sense of A. Weil" (or more generally in the sense of L. W. Cohen?)
and the bicompact extensions of T-spaces due to N. A. Shanin® (a
generalization of Wallman’s bicompactification).

§ 1. Definitions. In the present note we say that R is a
space, if R is an aggregate of ‘‘points’’ and to each subset A of
R there corresponds a set A, called the closure of A, with the
following properties :

1) ACA4, 2)
8) A B implies 4B, 4)

Thus R is a neighbourhood space such that we can take as a
basis of neighbourhoods of a point p a family of open sets con-
taining p. As is well known a space which satisfies the additivity
of the closure operation: A+B = A+ B is a T-space.

L2t R be a space. A collection {l,; a€ 2} of open coverings
of R is called a umiformity. Two uniformities {U,} and {8,} are
called equivalent, if for any U,<{lU,} there exists a covering
B, € {V,} which is a refinement of 11,, and conversely for any 8,
there exists U; € {ll,} such that U; is a refinement of B,. We say
that a uniformity {U,; e 2} agrees with the topology, if it satisfies
the condition:

(A {S(p,1,); a€ 2} is a basis of neighbourhoods at each point

p of R.

A=1Z,
0=0.

1) A.Weil: Sur les espaces a structure uniforme et sur la topologie générale,
Actualites Sci. Ind. 551, 1937; J. W. Tukey : Convergence and uniformity in top-
ology, 1940.

2) L. W. Cohen: On imbedding a space in a complete space, Duke Math. J.
5 (1939), 174-183.

3) N. A. Shanin: On special extensions of topological spaces, Doklady URSS,
38 (1943), 3-6; On separation in topological spaces, ibid., 110~113; On the theory
of bicompact extensions of topological spaces, ibid., 154-156. These papers are not
yet accessible to us. We knew the results by Mathematical Reviews.
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Here we denote by S(A4, 1) the sum of all the gets of a cover-
ing 11 intersecting a subset A of R?. A uniformity {Ul,; a€ £} is
called a T-uniformity, if it satisfies the condition:

(B) For any «,B€ £ there exists ve® such that U, is a re-

finement of U, and U,.
According as {ll,; a€ 2} satisfies the condition:
(C) For any a€ 2 there exists i(a)€ 2 such that for each set
Uellyy we can determine a set U, of 1. and 8=8(a, U)€ 2
so that S(U, ;) T U,,
or the condition:
(D) For any ac R there exists i{a) € 2 such that, for every set
U of U,q, S(U, U,) is contained in some set U, of U,,
the uniformity {U.} is ecalled regular or completely regular. The
condition (D) states that U, has a star-refinement U,,?. A com-
pletely regular uniformity is always regular. A space possessing
a uniformity which agrees with the topology is a uniform space.

Remark. A uniform space in the sense of A. Weil and J. W.
Tukey” is a T,-space which has a completely regular T-uniformity
agreeing with the topology. L. W. Cohen considered a T-space R
such that for any point p and any element « of a set £ of indices
there is defined an open neighbourhood V.(p) of p with the follow-
ing properties: 1) {V.(p); a€ 2} is a basis of neighbourhoods at
p, and 2) for pe R and for « there exist 2(a)€ 2 and &(p, a)€ 2
such that Vi, 0 (@) Vi) =0 implies Vi, (@) T Va(p) for every
point ¢ of R.? If we put Bu.= {V.(p); pe R} and construct all
the finite intersections of the coverings B,(a € 2), it is easily seen
that the set of these coverings defines a regular T-uniformity
agreeing with the topology.

§ 2. Uniformisable spaces. A space R is called weakly regular?,
if for every open set U containing any point p of R we have < U.
R is called regular, if for any neighbourhood U of p there exists an
open set H such that pe H, HCU. In case for any neighbour-
hood U of p there exists a real-valued bounded continuous function
Sf(x) such that f(p) =0 and f(x) =1 for xe€ R—U, R is called com-
pletely regular.

Theorem 1. In order that a space R possess a umiformity or
a regular uniformity or a completely regular umiformity or a T-uni-

4) J. W. Tukey: loec. cit.

5) Cf. A. Weil and J. W. Tukey: loc. cit., 1).

6) L. W. Cohen: loc. cit., 2).

7) N. A. Shanin: loc. eit., 8). Further a space satisfying the condition (D)
of T. Inagaki is nothing but a weakly regular space as is shown by our Theorem
1 and his theorem in his papsr: Sur les espaces & structure uniforme, Jour. Hok-
kaido Univ. Ser. 1, Vol. X (1943), p. 230.
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formity, agreeing with the topology, il is mecessary and sufficient that
R be o weakly regular space, a regular space, a completely regqular
space or & weakly regular T-space respectively.

Proof. For the case of eomplete regularity we ecan prove the
theorem similarly as in the case of A. Weil and J. W. Tukey".
Let R be a weakly regular space. Then the set {U,; a€ 2} of all
the open coverings of R is a uniformity agreeing with the topology,
gince for an open set (7 containing a point p we have S(p,1l.) G,
where U, = {G, R—p}. Moreover, if R is regular, this uniformity
is regular. Because for a covering 1. we can determine an open
covering l,q such that the closure of each set of U, is contained
in some set of l,, aud hence for any set U of U,, we have

< some U,, U,€ll,, and consequently, if we put U;={U,, R—U},
we have S(U, ;) CU.. If R is a T-space, then the above uniform-
ity is clearly a T-uniformity.

The necessity of the condition follows readily from Lemma 1
below, whose proof is easy.

Lemma 1. Let {ll,; a€ @} be a uniformity of a space R which
agrees with the topology. Then for any subset A of R we have
A =GIGTQS(A, 1.).

Remark. A T,-space is not always weakly regular. A weakly
regular T,-space is necessarily a T\-space, as is shown by Theorem
1 and Lemma 1.

§ 3. The simple extension R* of a space R with respect to a
uniformity. Let {l,; a€ 2} be a uniformity of a space R. A
family {X,; A€ 4} of subsets of R is called Cauchy family (with
respect to the uniformity {U,}), if it has the finite intersection
property and satisfies the condition:

(1) For any «a€ 2 there exist a set X, € {X,} and e 2 and a

set U, of 11, such that
~1(}{}\ ’ 6) / ]
A Cauchy family {X,} is said to be vamshmg, if II X,\ =0. A
Cauchy family {X,} is said to be equivalent to another Cauchy
family {V,}: written {X;}~{Y,}, if for any X, e{X,} and any
a € 2 there exist a set Y,e{Y,} and B¢ 2 such that

@ S(Y,, Uy) TS(X, W)

Lemma 2. If {X,}~{Y,}, then {Y,}~{X,}.

Proof. For any ac€ @ there exist X,e{X,}, B€ £ and U,€ll,
such that S(X,, ) T U,. By the assumption of Lemma 2 there

8) Cf. loc. cit., 1), in particular Tukey’s book p. 58. It is to be noted that
we do not assume the additivity of the closure operation which is not implied by
the complete regularity.
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exist ¥, €{Y,} and ve 2 such that S(Y,,, U,) TS(X,, Us). Then
we have Y, U,==0 for any Y,e{Y,}, since Y, -Y, =0, and
hence S(X;, W) CU.TS(Y,, ). Thus we have {Y,}~{X;}.

Lemma 3. If {X;}~{Y.} and {Y,}~{Z.}, then {X;}~{Z.}.

Lemma 3 follows directly from the definition. Hence the equi-
valence of Cauchy families is an equivalence relation. It may
happen that a non-vanishing Cauchy family is equivalent to a
vanishing Cauchy family. In this connection we state the following
lemma, which is an easy consequence of Lemma 1.

Lemma 4. If {U.} agrees with the topology and {X:}~{Y.},
then g}‘g =1Y,.

We cons;der the equivalence classes of vanishing Cauchy fam-
ilies; we denote the set of these classes by C. For any open set
G of R we define the set G* as a subset of R+C as follows: a
point xz € C belongs to G* if for any Cauchy family {X,} of the
class & there exist X, ¢ {X,} and a€ £ such that S(X,, U,) TG”,
and a point 2 of R belongs to G* if x€ G; that is,

8) G* = G+{w; {X,} € x implies that S(X,, U,) T G for some

X, e{X,} and 11,}.
Then we have

Lemma 5. G*-R=G, 0*=0, R*=R+C.

Lemma 6. G C H implies G*  H*.

Lemma 7. G, - G- --G,, = 0 implies G*G.*---G,* = 0.

Proof. If 2zeG*, ¢1=1,2,---, m, then we have x€ C and for
any Cauchy family {X,; 1€ 4} of the class & there exist 4,€ 4 and
a;€ 2 such that S(X, , ) TG, ¢ =1,2,---,m, and hence GiG;---
GmDX;,XM X, =0, which contradicts the hypothesis of the
lemma.

Now we take the set of G* for all open sets G of R as a basis
of open sets of R*. Then R* is clearly a space (in the sense of
§1) and R is a subspace of R*.

Lemma 8. U,* = {U*; Uell,} is an open covering of R*.

Proof. Let x€C. For any a€ 2 and any Cauchy family {X,}
of the class x there exist X,e{X,}, 8€¢2 and U,el, such that
S(X,, Uy T U,, which shows that x€ U,*.

Lemma 9. If a point © of R*—R is contained in G*, then we
have S(x, 11,*) T G* for some a€ L.

Proof. For a Cauchy family {X,} of the class x there exist
X, e{X,} and a€ 2 such that S(X;, U) TG. Let xeU* yeU,*
for some set U, of U,. Then there exist X, €{X;} and 8¢ £ such

9) It is proved by the definition of equivalence that the condition holds for
any {X)} of the class « if it holds for some {Z,} of z.
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that S(X;,, U)) TU,. If yeR, then we have ye U, S(X,, U.) G.
If yeC and a Cauchy family {Y,} belongs to the class y, then
there exist Y,€{Y,} and v€ 2 such that S(Y,, U,) T U.. Hence
we have S(Y,,0,) U, S(X,, U) < G, that is, ye€ G*. There-
fore S(z, Us*)"< G*.

Lemma 10. If xe R*—R, then we have

T = [5[8(96, n.%)] (R*—R).

Proof. Let ye[/IS(x,U.*)](R*—R). Then for any « there
exists a set U, of U, such that z, y€ U,*. By the argument in the
proof of Lemma 9 we see that for a Cauchy family {Y,} of the
class y there exist Y,€{Y,} and v¢€ 2 such that S(Y,, ;) ZS(X;, )
for any X,e{X,}. This shows that {X,}~{Y,}.

Lemma 11. If a vanishing Cauchy family {X,} belongs to the
class x which is a point of R*—R, then we have x = I}IX}_, where

the bar indicates the closure operation in the space R*.

Proof. For any a€® there exist X; €{X,}, 8¢ and U.ell_
such that S(X, , U,) C U,. Hence we have X, - Sz, .*) &£ 0, since
Xy - U,4=0, 2z€U,*, and conszquently x¢€ {IX; by Lemma 9. On

the other hand, from the relation S(X, , Uy) T U, it follows that
S(X;,, U*) < U.*. Hence we have X, < U.* < S(w, U.*). There-
fore {IX’A < {‘I'S (xz, U.*). Since {X,} is vanishing, we have x = {IX;
by Lemma 10.

Lemma 12. If G is an open set of R, then S(G*, U*) T[S(G, U)]*.

This Lemma follows immediately from Lemmas 6 and 7. Sum-
‘marizing above results we obtain

Theorem 2. R* 4s a space which contains R as a subspace.
R is dense in R*, and every point of R*—R is closed.

Theorem 3. {ll.*} s a uniformity of R*. {U.*} s a T-uni-
formity, o regular uwniformity or a completely regular uniformity,
according as {U.} is a T-uniformity, a regular uniformity or a com-
pletely regular uniformity.

Theorem 4. If a uniformity {U.} of R agrees with the topology,
then the uniformity {U.*} of R* agrees with the topology.

Proof. Let xeR. If S(x,U.) < G, we have S(x, %) < G*.

We call R* the simple extension of R with respect to the uniform-
ity {U.}.

Remark. If {U; Uel,, a€ 2} is a basis of open sets of R,
then {U*; Uell,, a€ 2} is a basis of open sets of R*.

§ 4. TFurther properties of R*.

Lemma 13. If {S(x,.); a€ 2} is a basis of neighbourhoods of
a point x of R, then we have
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4) {IS(a:, u*) = {tIS(x, ).
Proof. If ye(R*—R) - IIS(x, 1,*), then there exists, for any

acf, aset U, of U, such that xe U, and ye U,*. For a Cauchy
family {Y,} of the class y there exist Y, €{Y,} and g€@ such
that S(Y,,, Us) CU.. Hence we have xe U, TS(Y,, U,) for every
Y,€{Y,}, and consequently we have S(x, U,) - Y, == 0, which shows
that x€ /7Y, - R by the hypothesis of the lemma. This contradicts
the assur';lption that {Y,} is vanishing. Therefore ({S(x, . < R.
This proves (4).

Lemma 14. If {U.} agrees with the topology, then

(5) IS, U*) =z or %+ R,
according as x€ R*—R or x€ R.

Proof. Since IIS(z, 1,*) =% by Theorem 4 and Lemma 1, we
have (6) by Lemmas 11 and 13.

Theorem 5. If R is a T-space and {U,} s a T-uniformity of
R, then E* is a T-space. Furthermore, if R is o T,-space, so ts R*.

The first part of the theorem follows from the next Lemma
15. The second part is obvious.

Lemma 15. If {l.; a€R} is a T-uniformity of a T-space R,
then we have (G,-G)* = G*-G.* for any open sets Gy, G» of R.

Proof. Let xeG* -G.,* and x€C. Then for a Cauchy family
{X,} of the class x there exist X, €{X,} and a;€ 2 such that
S(X,,, U) <Gy, ©=1,2. If we take a common refinement U; of
U, and U,,, then we have S(X, - X,,, U) ZG,G.. Let S(X,, U,) U,
for some X,e{X,}, ve®, U,el,. Then we have S(X,1,)
TS(X, X, , ) T GiG.. This proves Lemma 15.

Theorem 6. If R is a Tiy-space and {W.} is a T-uniformity
which agrees with the topology, then K* is a T-space.

Theorem 6 is a direct consequence of Theorem 5 and Lemmas.
13, 14. The following theorem is algo clear.

Theorem 7. If R is a (completely) regular space and {U.} s
a (completely) regular uniformity which agrees with the topology, then
R* 45 a (completely) regu ar spuace.

§ 5. Completeness. The case of regular uniformity.'” A space
R with a uniformity {ll,} is said to be complete with respect to the
uniformity, if every Cauchy family {X,} with respect to {l.} is
not vanishing, that is, {[)?AL-}:O.

Theorem 8. A space R is complete with respect to the uniform-
yit {U.; a€ 2} which is composed of all open coverings of R.

10) The general case will be treated in the third note.
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Proof. If a Cauchy family {X,; 1€ A} is vanishing, then
{R—X,; A€ A} is an open covering of R, and hence it is equal to
some U.. Since {X,} is a Cauchy family there exist 1€ 4 and
U.el, such that X, < U,. On the other hand, U, is expressed
as R—X, with some p€A. Hence we have X, -X, =0, contrary
to the finite intersection property.

Corollary. A regular (or fully normal) space R s complete with
respect to some regular (or completely regular) uniformity.™

The extension R* is not always complete, as will be shown
below. Here we shall prove

Theorem 9. If {l.} is a (completely) regular uniformity of a
space R which agrees with the topology, then R* is complete with
respect to the uniformity {1,*}.

Weil’s theorem and Cohen’s theorem are contained in our
Theorem 9. We first prove some lemmas.

Lemma 16. Let {ll.; a€ 2} be a regular uniformity of a space
R. Then a family {X,} of subsets of R with the finite intersection
property is o Cauchy family if for any a€ 2 there exist a set X, € {X,}
and a set U. of U. such that X, < U,.

Lemma 17. Let {X,} and {Y,} be Cauchy families with respect
to a regular uniformity {U.; a€ 2}. Then {Xi}~{Y.}, ¥ for any
acQ and any X,e{X,} there exists a set Y,€{Y,} such that Y,
TS (X, ).

Since Lemma 16 is clear, we have only to prove Lemma 17.
For any «ae® there exist X, €{X;}, €2 and U,y e€lU,s such
that S(X;,, U) CUsw. Let Y, S(X;,, ;). Then we have S(Y,, ;)
TS(Xy, Us), where & = 8(a. Uw)-

Cororally. {X,} ~{Y,} o and only if {X,+Y.} is @ Cauchy
family. Here {U.} s assumed to be o regular uniformity (or a. T-
uniformaity).

Proof of Theorem 9. Let {M,; i€c A} be a Cauchy family of
R* with respect to {Ul.*; a€ 2}. According to Lemmas 16 and 17
{S(M,, 0¥ ; 1€ A, a€ 2} is a Cauchy family which is equivalent to
{M,}. By Lemma 7 {R-S(M,, U,*)} is a Cauchy family of R with
respect to {U.}. Hence we have I/ S(M,, U.*)-R==0, and con
sequently /TM,==0 by Lemma 4. Thus R* is complete.

Example. In case {ll,} is a completely regular uniformity
which does not agree with the topology, R* is not neccessarily
complete even if R is a metrizable space. Let R be a subspace

11) This is proved for metric spaces by J. Dieudonne (Ann. L’ecole norm.
sup. 56 (1939), p. 280) and for fully normal spaces by T. Shirota (Shijo-Danwakai,
9 (1948), p. 283), and by the present author (ibid., 13 (1949), p. 458).

12) Cf. footnotes 1), 2) and the remark at the end of §1.
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of a two-dimensional Euclidean space such that R = {(z, v);
0<e<L 0y 1}+{(x, 0 021} +{(a,1); 0 < <1}, Let
us denote by U,; the intersection of the set {(x,%); 0 2<L1,
1_3_“_1 <y <—7-;;1} with R and put W,={U,;j5=0,1,---,3'}. Then
it is easy to see that {11} is a completely regular uniformity of R.
For any real number « a Cauchy family { i} (i%i . a); m=1,2,.- }

i=m

defines a point of R* which will be denoted by »*(«a). Then
B = R+ {p*(@); 0<a <1}, and {Sp(,1;)im=1,2,] isa
vanishing Cauchy family with respect to {l1,*}. Thus R* is not
complete, (while R** is complete).



