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51. On the Metrization and the Completion of a
Space with Respect to a Uniformity.

By Jingoro SUZUKI.
(Comm. by K. KUNUGI, M.J.A., May 16, 1951.)

We first recall some definitions.” A collection {lU.|ac2} of
open coverings of a topological space R is called a uniformity. If
{U.]| ac 2} satisfies the condition:

For any a,B8¢€ 2 there exists ve2 such that U, is a refinement
of 1, and U,, {U.} is called a T-uniformity.

If {U.|ac2} satisfies the condition :

For any a€f2 there exists A(a)e2 such that for each set
Ui(a) € N)(a} we can determine a set U, of U, and & = 8(a, Uy())eL
80 that S(Us @, Us) Us, the uniformity {U,} is called regular.

In §1 we shall prove

Theorem 1. If a countable number of open coverings {U, |n=
1,2,---} of a T,-space R forms a regular T-uniformity agreeing
with the topology, then R is metrizable.

The simple extension R* of a space R with respect to a uni-
formity {U.} is not always complete. In §2 we shall show that
if we understand the notion of a Cauchy family in a more re-
stricted sense, then the simple extension R* of R in this restricted
sense is complete if {U.} agrees with the topology of R.

I express my sincere thanks to Prof. K. Morita for his many
valuable suggestions and advices.

§1. Theorem 1 will be established by virtue of a theorem of
A.H. Frink,? if the following three lemmas are proved.

Lemma 1. Under the assumption of the theorem there exists
a uniformity {8,|n =1,2,---} such that {®8.} is equivalent to {U,}
and B, > B. >+ >B, >---.

Proof. We put U, = B,. Next we select ;. such that U,y U,
>l and put Up = B:. Now let us assume that B, are obtained
for t <n. We take U,.; such that U,g,), o > U and put
Up,.s = B,,,. Then {B,|n=1,2,--.} satisfies clearly the condi-
tions of Lemma 1.

Lemma 2. For any point p of the space R and any index =,
there exists an index m, such that

1) K. Morita: On the simple extension of a space with respect to a uni-
formity. 1. Proc. Japan Acad. 27 No. 2, (1951).

2) A. H. Frink: Distance functions and the metrization problem. Bull. Amer.
Math. Soc., vol. XLIII (1937), Theorem 4, p. 141.
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S*(p, B.a) < Sp, B.) .

We ghall denote such m, by p(p,n).

Proof. For the index n, we take the index m, = i(n) and for
the index m,, we take further the index m.= A(m.). Then there
is a V,. such that peV,, V,.€B,.. If for m,, V,. we take [, =
o(m,, V), there exists some V,.€R8,, satisfying the relation :

( 1) ‘S(sz‘ ’ %“) < le .

For the index n and V,,, we take the index l.= &, V.,;), then
for some V,eB, we have

(2) SV s By T V..
If we take finally ., such that

(3) Bu, B> B »
then

Sf(/p, %m)) < S’(p, (Bu) .
In fact, from the relations (3), (1) and (2) it follows that
S¥ D, B = S(S(D, Bo)s Bo) < S8, Bu); Biz) TS(S(Vinzy Bir), B
TSV 5 Bi) < V.. < S(p, B.) .

This completes the proof of Lemma 2.
Lemma 3. For any point p of the space R and any index #,
there exists some index m = m(p, n) such that

(4) S(p, B) ~ Sg, B,)==0
implies
S(g, B,) < Slp, B,).

Proof. For the index n, we put m, = p(p,n) {(cf. Lemma 2).
For the index m,, we put further k = w(p, m,). Then we have

(5) S*(p, Bx) < S(p, B,.) -
Moreover, if we take %, such that
(6) %k, SBm()>'g§m’

then the index m satisfies the condition of this Lemma. Indeed
by the relations (4), (6), (6) and Lemma 2 we have

S(g, B.) < 8w, B} = S(S(p, B..), B.) < S(S*®, By), Byw)
C S(S(p’ g;mf))’ ‘S\)SWM) = Sﬂ(p’ 5Ism’)) ( S(p, %n) .

This completes the proof of Lemma 3.

Thus we have proved that {S(p, 8.)|n = 1,2, ---} satisfies the
conditions of A.H. Frink.? Hence the proof of Theorem 1 is com-
pleted.
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Remark 1. L. W. Cohen said in his famous paper as follows:
““The question arises as to whether a Hausdorff space, satisfying
the first denumerability axiom and III,: To each pe R and n,
there are positive integers m(n) and k(p, n) such that if Vig,w()-
Voiy(0) =0 then Vigy(@) < Vu(p), is metrizable.”” From the
neighborhood system satisfying above conditions, we can construct
a uniformity which satisfies the conditions of Theorem 1,9 so that
this question is affirmatively answered by our Theorem 1.7

§2. Let {Il.|ac2} be a uniformity of B. We shall say that
a family {P,|i€A} of subsets of R is a Cauchy family (with re-
spect to the uniformity {U.}), if it has the finite intersection
property and satisfies the condition :

1) For any acf there exist a set P,e{P,} and B2 and a set

U. of U, such that S*(P,, ;) T U,.

Theorem. 2. If {U,} is a T-uniformity, then 1) is equivalent
t0 the condition.

2) For any integer »>2 and «, there exist a set P,e{P,} and

Be2 and a set U, of U, such that S*(P,, U;) < U..

Proof. It is evident that 2) implies 1). To show the converse
it is sufficient to prove for » = 8. For the index « we take 8 and
2 satisfying condition 1), and further for the index @8 we take
4 and B, such that it satisfies the condition 1). Let 1, be a re-
finement of U, and U, , then we have

SS(PA‘,, upl) = S(S"’(P}o, ua,); uﬂ,) < S(Uﬂ.a ) < S(S(PA, us), ;)
<SPy < U Q.E.D.

It is to be noted that our definition of Cauchy family is more
restrictive than that of K. Morita, that is {P,} is a Cauchy family
in the sense of K. Morita if it is a Cauchy family in our sense.

A Cauchy family {P,} is said to be equivalent to another
Cauchy family {Q,}: written {P,}~{Q,}, if for any P,e{P,} and
any a€f there exist a set Q,€{Q,} and Be2 such that S(Q, ) T
S (P 2, ua)’

As is shown by K. Morita, the equivalence of Cauchy families
is an equivalence relation.

For a subset A of R we denote by A% the closure of 4 in R.
‘We consider the equivalence classes of wvanishing Cauchy families
and denote by p* the class to which {P,} belongs. Then we define

C={p"| {7?? = 0 for some {P,}ep*},

3) L. W. Cohen: On imbedding a space in a complete space, Duke Math.
Jour., vol. 5 (1939), p. 183.

4) Cf. K. Morita: Loc. cit.

5) Mr. M. Sugawara reported at the annual meeting of Math. Soc. of Japan
in Oct. 1951 that he solved affirmatively this question of Cohen. His proof is not
yet known to us.
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and
Rt=R+C.

Moreover, for any open set G of R we define the set G* as an
open subset of R+ C as follows:

Gt = G+{p*|p*eC and {P,}ep* implies that S(P, U,) < G for
some P, and U}, and define

o= {U* | Uell}.

We take G* as a basis of open sets of B*. Then the following
lemmas can be proved.”

Lemma 4. {W,*} is a uniformity of R*.

Lemma 5. If {U.} agrees with the topology of R, then {ll.*}
agrees with the topology of R*.

Now we shall prove

Theorem 3. If {lU,} is a T-uniformity of R, agreeing with
the topology of R, and {X,} is a Cauchy family of R*, then
I X3 ==0.

AEN

Theorem 3 follows immediately from the following lemmas 6,
7 and 8.

Lemma 6. If we define {P. | P, = S(X, U.")-R, 24, a2},
then {P,.|4€4, ac®2} is a Cauchy family of R. Accordingly it is
also a Cauchy family in R".

Proof. Since it is clear that {P,.} has the finite intersection
property (cf. Lemma 7 in Morita’s paper), it is sufficient to prove
that for any « there exist Py, » B€2 and U.el, such that S*(Pay »
U,) < U..

For any index «, there exist icd, Be2 and U,* €ll,” such that

(7) S‘Z(XA, u5+) < U¢+ .
Next for the index B, there exist 4,8, and U,*ell,;* such that
(8) SH Xy > Ug,) T Us™ .

Moreover, if U, is a refinement of U, and U, , then we have
Sg(Plost ’ us1) < Ucn .
In fact, from (8) and (7) it follows that
SPyys,» Un) TSHP gy, Uy ) TSHS( Xy Up, ), Up, F) TS (S Koy s U, ), Us*)
TSUg*, N TS(S(Xn, Upt), U TSAX,, WH Ut

Therefore U.=U." R > S*(Ps s, , Up)R=S*(Psp, , Us) -
This completes the proof of Lemma 6.

Lemma 7. {X,}~{P,.}, that is, for any A and « there exist
Py, and B, such that S(P, g, Us,") T S(Xy, Ua’) -

Proof. For any index « there exist A, @, and U,*ell,* such
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that S(X,,, Ue,") < U.*. Then we have S(P;,, Ut )=8(X,,, ")
< Ua+ C S(XA ) uct+) .
Lemma 8. {X,}~{Y.} implies IAIXA’“=11'I7,.LR+ .
13

This is evident by Lemma 4 in Morita’s paper, since {U,*}
agrees with the topology of RE*.

Theorem. 4. If the uniformity {lU.|a€®} is a regular T-uni-
formity, the condition 1) of Theorem 2 is equivalent to the con-
dition :

38) For any « there exist 4, 8 and U.¢ ll. such that

S(P).’ uﬂ) < Ua .

Proof. It is evident that 1) implies 8). We shall prove the
converse. For any index a, we take A(a). By the condition 3)
for A(a) there exist 4, 8, and U, € Uy such that

(9) S(Ply uﬁ,) C U}\(a) .
For 8§ = &(a, U, ) there exists U.€ U, such that
(10) S(Usw W) < U

Moreover, we take U, such that U, U, >1,. Then from (10) and
(9) it follows that
S (P, M) T S(S(Pa, Up)y 1s) T S(Uny 5 o) < U

This completes the proof of Theorem 4.

Remark 2. Let R* be the simple extension of R with respect
to a uniformity {1,} in the sense of K. Morita. Our extension R*
is in general a subspace of R*, but R* coincides with R* for a
regular T-uniformity, as is shown by Theorem 4.



