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71. Probability.theoretic Investigations on Inheritance.
XIo Absolute Non.Paternity.

By Yfisaku KOMATU.
Department of Mathematics, Tokyo Institute of Technology and

Department of Legal Medicine, Tokyo Medical and Dental University.

(Comm. by T. FURUATA, M.J.A., June 12, 1952.)

1. Absolute non.paternity.

In several preceding chapters we have discussed the problems
of proving non-paternity exclusively on the supposition that an
inherited character of mother has been known as well as that of
her child or those of her children. A fundamental postulate has
accordingly based on a fact that any type not able to produce
with her a child in question can never belong to a true father.
Hence, the problems are, so to speak, those relative to a type
of mother.

On the other hand, there are cases where non-paternity proof
is possible without taking a type of mother into account; namely,
there exist pairs of types which can never belong to father and
his any child. Non-paternity will then be established absolutely,
i.e., with no regard to a type of mother.

If non-paternity proof is possible absolutely, then t s, of
course, also possible relatively to a type of mother. Hence, any

probability of proving absolute non-paternity does never exceed the
corresponding one of proving relative non-paternity.

We now begin with a problem stating that: Given a child and
a man, at how many rate the non-paternity proof can be absolutely
established ? Let a type of a child be A and that of a man be A.
The absolute non-paternity can be verified if and only if there exists

no common suffix between i, j and h, k. Since it is the same to
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us whether a type of a child or of a man is considered to be basic,
we shall here classify the cases according to the former and thus
denote by

(.) c(i)

the probability of an event that a child of A appears and then the
proof of absolute non-paternity can be verified.

Against a homozygotic child A,, anyone not possessing a gene
A, and such one alone, can never be a true father, what implies

(1.2) C(ii)=p (1-p).

Against a heterozygotic child A(iQ=j), anyone possessing neither
a gene A nor A, and such one alone, can never be a true ather,
what implies

(.3) c(’)=2,(-,-) (i y)o

The partial probability of proving absolute non-paternity over
homozygotic children is given by

(1.4) C(ii)=S.--2S +S,

and that over heterozygotic children by

(1.5) ’ C(iy)=I-5S +6s+2s-as.
l,

The sum of the last two quantities yields the whole probability of
proving absolute non-paternity expressed in the form

(1.6) C=1 4S. +4S+2S-3S.
In an individual case of inherited character where recessive

genes may be existent, the pairs without father-child relationship
can immediately be read rom a table in 1 of IV. In fact, a table
concerning mother-child combinations may, as it is, also be regarded
as the one concerning father-child combinations, so that the pairs
with the vanishing probability are just those incompatible as a
father and his child. Thus, for instance, in case of ABO blood
type, O and AB being incompatible with AB and O respectively,
and these alone being incompatible pairs, the whole probability of
proving absolute non-paternity is equal o

(1.7) Cxo 4pqr.
In case of AABO blood type, A and AB becoming moreover in-
compatible each other, the whole probability is then given by

(1.8) C,o=4pqr +4ppq (p+ 2r).

The case of MN blood type is a special one (m---2) of general
discussion; the whole probability is given by
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(1.9) C 2st.
In case of Q or Qq+_ blood type, any pair being compatible, the
whole probability vanishes, i.e.,

0.

Generalization to mixed combinations is also possible. The results
are as follows; distributions of populations to which a mother of
child and a man in question belong being denoted by {p} and {p;},
respectively"

(1.11)
(1.12)

C’(ii)=pp(l" p)

C’(ij)=(pp/ pp)(1 p p) (i=
C’(ii)--S,-2S,,+ S,,

Z’C’(ij)=1- (2S; + 3S,)+ (S/, + 5S,,)+2SS,-4S, ;
the whole probability of proving absolute non-paternity being then

(1.15) C’---1-2(S’+S,)+(S; +3S1,)+ 2S’S,--3S,.
In concrete cases the results become as follows:

(1.16)

(1.17)

(1.18)

(1.19)

Co--2rp’q’r’ + (pq’ + qp’)r’,

C’lo2rp’q’r’ + (pq’ + qp’)r’
+ (pq’ +qp)pp+ 2r’) + (pp+ pr’ + ,p,pq,

Cj,=s’t’(st’ + ts’),

C=C+=O.

2. Absolute non.paternity against children of the same family.

Probabilities of brethren combinations consisting of children of
the same family have already been listed in a table in 1 of V.
We next denote by

(2.1) D(ij, hk)

the probability of an event that such a brethren combination (A,, A)
appears and then the proof of absolute non-paternity can be estab-
lished against both of them.

The present discussions correspond to those in 4 of IX; namely,
the problem concerns the absolute non-paternity against both
children of the same family separately, i.e., against, both first and
second children indifferent to second and first children respectively.
The discussions corresponding to those in 7 of IX will be performed
in a subsequent section.

Now, against a combination (A,, A,) anyone not possessing A
(and, of course, such alone) can never be a true father, what implies
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(2.2) D(ii, ii)=a(ii, ii)(1-p)=p(1 +p,)(1-p,).
Against a combination (A,, A)(hQ=i) anyone possessing neither

A nor A can never be a true father, what implies

(2.3) D(ii, hh)=(ii, hh) (1-p-p)={pp(1-p-p) (h--i).

Similar considerations lead to the following results:

(2.4)
(2.5)
(2.6)
(2.7)
(2.8)

D(ii, ih)--- 1/2pp(1 + p)(1 p-p) (h Q= i),
D(ii, h)--1/2ppp(1-p-p-p,) (h, kQ=j; h Q= k);
D(ij, ij)=1/2pp(l + p+p+ 2pp.)(1--p-p) (i =]),

1D(ij, ih)==ppp,(l+2p)(1-p-p-p) (i=j; h--i, j),

D(ij, hk)--pppp(1- p-p-p-p),
(i=]; h, k=i, ]; h-Q=k).

Remembering an evident symmetry relation

(2.9) D(ij, Mc)=D(M, ij) (i, j, h, k-l, ..., m),

all the possible cases have thus essentially been worked out.
Partial sums oi probabilities with respect to type of first child

can be obtained in a usual manner, yielding

(2.10)

(2.11)

Sub-probabilities over homozygotic
children become, respectively.

and heterozygotic

D(ii)D(ii, ii) + (D(ii, ih) + D(ii, hh)) + ’ D(ii, hk)
p(1 2S/S/S-

(2-2s+ s.)p,+ (a-s)p-P+1/4P),

D(ij)D(ij, ii) + D(ij, jj) + D(ij, ij)

+ Z (n(ij, hh) + n(i.i, ih) + n(ij, jh)) + Z’ D(ij,
k l k, ]= i,

8 1=2pp(1-2S,/S/ S-S-(2 2S./S)(p/p)
/ (3-S)(p/ p]) /2pp-](p/ p]) 2pp(p/ p)

pp)

first

(2.12) {. D(ii)=S-2S 2S/ 3S
+ss s,+ 1/2s-s ss,+ s.,

17’D(ij) 1 7S+Z+S Z
(2.13) ,

25 29-SS+S S]+2S+SS-S,
the sum of which represents, of course, the whole probability

(2.14)
39SS+ llS+ -S+2SS-S.

Generalization to mixed combinations is possible,
be omitted and left to the reader.

while it will



No. 6.] Investigations on Inheritance. XI1. Absolute Non-Paternity. 315

As illustrative examples we state here the whole probabilities
against both children separately in case of ABO, Q, Qq+_ as well as
MN blood types; in three former cases, the existence of recessive
genes requires a careful consideration. The results are as follows:

(2.15) Do=1/2pqr (3 / r -t- r / 2pq),

(2.16) D--D+_--O,
(2.17) Dx=st(5-2st).

3. Absolute non.paternity against a distinguished child at any

rate or alone.

Probabilities of proving non-paternity against a distinguished

child, for instance, a second say, among brethren of the same
amily can be discussed in a similar way corresponding to 2 of IX.
But, the detail will be left to the reader. We notice here only
that the whole probability in this case will naturally coincide with

C in (1.6). And hence, given a brethren combination of the same
family, the case where the proof of absolute non-paternity is possible
against second alone possesses the whole probability

C-D-=2S-S--S+:S
(3.1)

+ 9S2S3-11S5- sS 2S2Z+S;
the result corresponding to (6.3) of IX.

We now proceed to a more proper problem concerning brethren
of the same family. Corresponding to 7 of IX, if it is sure that
both children belong to the same amily, the non-paternity proof
would be established against both children provided that it is estab-
lished against at least one child among them. The whole proba-
bility of the presen problem s immediately obtained. Namely,
the same reason Which has led to (7.5) o IX leads now to an

expression

D-2C-D--1 2S-S S S
(8.2)

+ 9SS S-S 2SS+ So.
As a basic quaniy, we introduce, corresponding to. (7.2) of IX

or raher o ](ij, hk) contained in (7.10) o (7.14) of X, he proba-
biliCy of proving absoluCe non-paternity against a least one child
among a brethren-combination of Che same family (and hence simul-
Caneously agains boh of hem) which will be denoted by

C(hk)

the presented combination being (A, A). In view of the defini-
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tion (3.3),

(3.4)

is obvious. Explicit expressions
(2.2) to (2.8), as follovs:

(3.5) D(ii, ii)--p(1 + p)(1 p),

(3.6) D(ii, hh) ppi(1 2pp)

(3.7) D(ii, ih)--1/2pp(1 + pJ(1 p)

(3.8)

(8.9)

(a.o)

(3.11)

the relation

D _- D(ij, hk)=2C-D

will be derived, corresponding to

(h 4= i),

(h =4: i),

D(ii, hk)=1/2ppp(1-2p(p+ p)) (h, k--=i; h--- k);

D(ij, ij)--1/2pp(l+p+p+2pp)(1-p-pj) (i---j),

D(ij, ih)--1/2pp:pa(l + 2p:)((1-pJ"-2pp) (i=j; h=i, j),

D(ij, hk)--pppp(1 2(p+ pj)(p+ p))
(i--j; h, k--Q:i, j; h--- k).

Partial sums corresponding to
tively,

(2.10) and (2.11) become, respec-

(3.12) (ii)=p(1-(+ Z-1/2S3)p-({-S)p+ 2p-1/4p),
1SD(ij) 2pp(1 (1 + -S- )(p+ p) (1 S)(p+ p) +pp

(3.13) + (p+ p) +2pp(p+ p)
1 pp) (ij).(p+ P) PP(P+ P)

Hence, we get, corresponding to (2.12), (2.13) and (2.14),
1(3.14) D(ii)=S-S-S-SS+2S+S+SS-S,

i1

IOSS’ D (ij) 1 3S S+7S+
(3.15) ,

13S-2S-3SS+S;
D 1 2S S -S+S

(3.16)
+ 9SS-llS-S-2SS+S.

The last result is nothing but the one already stated in (3.2).

--To be continued--


