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89. A Generalization of a Theorem of Suetuna
on Dirichlet Series.

By N. C. ANKENY.
Institute for Advanced Study, Princeton, U.S.A.

(Comm. by Z. SUETUNA, M.J.A., Oct. 13, 1952.)

Introduction.

Professor Z. Suetuna proved in T6hoku Math. Journal 27, 1926,
248-257, the following interesting theorem" Let ;x, )5, 95 be any
three primitive Diriehlet characters, i.e. mappings of the multipli-
eative group of the rational numbers (mod m), for some integer m,
into the unit eirele in the eomplex plane. Let

L(s, Z)= , Z,(n) 9}(s) > 1
=1 T

be the corresponding Dirichlet L-series.
Theorem 1" If

Z(s) II L(s, Z,) (s) > 1

when developed into a Dirichlet series has non-negative coecients,
then

1 Z(s)---C(s)

2 )
or

3 z(s) .s),
where {(s) is the Riemann zeta-function, CFl(s) is the Dedekind
zeta-function of some quadratic extension of the rational numbers,
and {F.(s) is the Dedekind zeta-function of some cubic Abelian ex-
tension of the rationals.

What we propose to prove in the following paper, is that if
), ) are any n+l characters (mod m), not necessarily distinct,
with at most one of the characters being principal, and if

II L(s,

has non-negative coefficients, then

(4) I L(s,

where K is a finite Abelian extension of the rationals, and (s) is
the corresponding Dedekind zeta-function.
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(4) is, unfortunately, only a restricted generalization of Pro-
fessor Suetuna’s result; however, one can see that for a large n
there could not possibly be such a simple result as (4).

What we shall do in Section 2 is to reduce the problem to a
problem on polynomials in several variables which we will state
here.

Theorem 2" If
m-I qn -1

..., aj,
=0 j=O

is such that
(a) f(O, O, ..., 0)----1,
(b) aj j are all non-negative rational integers,
() for each i, the greatest common divisor of the set j’ and m

is 1, where j’ runs over all j with at least one aj j, j=4=O,
i i(d) f((m, (m’ "’" )0 for all sets of integers , ., ...,,t

2

where (=e then
m-I

f(x, x, ..., xt)-- E x)
1

Theorem 2 will be proved in Section 3 for the case when t--1
and all essential details of the proof when t>l will be given in
Section 4. Section 1 will consist of a few introductory definitions
and lemmas. Section 2 will show the relationship between (4) and
Theorem 1, showing that Theorem 2 mplies (4).

We may note that (4) will also hold for L-series defined in any
algebraic number fields, and the proof is almost identical with the
following.

Section 1.

Definitions" a, b, c, d, h, k, l, m, n, i, j, u, will always denote non-
negative rational integers, p will always denote a positive rational
prime, and

(m), (m) denote the Euler and the MSbius functions, respec-
tively.

R denotes the rational numbers, and R() is the field attained
by adjoining to R.

Lemma 1" The irreducible equation satisfied by in R is

( 5 g(x)-- H (1-x)(--)

furthermore,
( 6 SR((),R()--I(m)



No. 8.] A Generalization of a Theorem of Suetuna on Dirichlet Series. 391

where SR(,),R(r) denotes the trace of ’ from R(’) to R; and

7 (R(’) R)--o(m).
Proof: The statements in Lemma 1 are all well-known facts

about cyclotomic fields and equations and will not be included.
Lemma 2: If a is an algebraic integer contained in an algebraic

field F of degree over R, and if a and all its conjugates over R
are positive, then

Proof" Denote by a=a(1), a(), ..., a() the conjugates of
Then by the arithmetic-geometric mean

S, (a) a(l a( =l(N, (a) l
11 1

as N,(a) is a positive integer.

Section 2.

Let h denote the least common multiple of all conductors of the
characters Zo, Z,.-., Z. in the Introduction. Let G be the smallest
group of characters defined (rood h) which contains our set
Denote by r, r,..., r a set of generators of G each of order m,
m, ..., m, respectively (i.e. r=l, and m is the least positive

integer for which this is true).
Denote by aj j the number of times r, r, ..., r for

j=0, 1,..., m-I appears in the set (Z). We see from the defini-
tion of the aj j that they are non-negative.

Now for (s)l, we have by the Euler product that

herefore,
ml-1 m=-I m-I v.. vJ)a’ ’IIL(s,)= H H L(s,

i=0 j, =0 j==O j =0

g=l p jl=0"" j=0 " = l"
By hypothesis c0, and in particular %0 for all primes p.

m1-1 m -1
c,= Z Z ajl jrl.., r(p)

k=o j =o
ml-1 m -1

Z ajl j---ril(p)r./.(p).., r. (p).
j=0 j =0

By Dirichlet’s theorem regarding primes in an arithmetic pro-
gression, we have for every u such that (u,h)=l, there exist
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infinitely many primes p such that
p-u (mod h).

Hence, for any given t triple (i, ..., i) with Oi(m, there
exists a prime p such that

Also by Dirichlet’s theorem, and the fact that the real point
on the line of convergence of a Dirichlet series with positive coef-
ficients is a singularity of the unction, we see that s--1 is a

singularity of / L(s, ZO. Hence, at least one character must be
i=O

principal, and by hypothesis this means only one character is
principal, i.e. ao, 0--1.

m-I m -1
Let f(x, ., xt)= j=o j=o aj jx xJ
Hence, by the above we see f(x, ...,x) satisfies all the con-

ditions of Theorem 2, except perhaps (c). But (c)must be satisfied,
otherwise the group of characters G is too large for our purpose.

Assume for the moment we have proved Theorem 2. This would
imply that aj j---1 for all (j, ...,j). Therefore, our set of
characters ()coincides with G. It is then well known by Class
Field Theory that there exists an Abelian extension of R whose ray
(rayon) group in R will coincide with the kernel of the homomorphisms

of G acting on R. We then see that H L(s, ) must be the zeta-
i0

function of this Abelian extension, and so Theorem 2 implies (4).

Section 3.

We shall give here the proof of Theorem 2 when t=l.
Case 1. m-----p. Consider

/’p-1 \

kj=0 / j=0

-,(p l)ao a (p l)
x= a <p 1

by properties (a), (b) and (c) of Theorem 2. By assumption (d),
f(,) is a totally positive (0) algebraic integer in R(ff)which is of
degree p-1 over R. Hence, by Lemma 2

Therefore, by Lemma 1,

f(x)=Ex

Case 2. w(m)=hl where ff m=m=ce p c>1 then

w(m)=c + c +... + Cr.
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We have shown that Theorem 2 is true if w(m)--l. Proceed-
ing by induction, assume the theorem is true if w(m)h-1.

Define

g,(Y)= ajy

where p=p and n--m[p. Then

(8)

’n,-I -I

J=0

So by (8), we see that gjy) is non-negative for =# for
v=0,1,2, ..., n-1. By the definition of g,() we see that the
eoeeients are non-negative and that ,(0)=1. Hence, ,() satisfies
every condition of Theorem 2, with =1 and m replaced by n, exeept
erhaps condition (e).

Let d be the greatest common divisor of the y and n where y’
runs over all j such that a,O. Henee,

n/d-1
g-(Y)= Z a,Y.

I,-1

If 7(z) az =z
J=0

then y.(z) satisfies all the conditions of Theorem 2 with m replaced
by n/d. So by induction,

or

n/d-1

.(z)= z
J--0

n/d-1
( 9 g(x) Z x.
By (9) the roots of gjx’) are C. where is not divisible by

m/pd. Furthermore, by (9) g,(x) is non-negative for any ruth root
of unity.

As the elements on the left-hand side of (8) are non-negative,
we have that f(C.)=0 if m/pdX 1. Hence, g,(x’) divides f(x), or

(10) f(x) =g.(xDh(x)
where the degree of h(x) is pd by (9). Also by (9) and the fact
that f(x) has non-negative coefficients, h(x) has non-negative coeffi-
cients

h(0)= f(0)--1.
g(0)

Again by (9) g(C)>0, so h(C)0 for all i.

If w(pd) (w(m), then h(x)= 1-x, so by (9) and (10),
1--X
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f(x)=1--x--
1--X

If w(pd)=w(m), then as din, pn=m, we have d---n. Hence by
(9), gn(x) 1.

In formula (8) let v--0, so

__1 f(’)--1,

or

(11) Ef()=p--f(1).

Now f(1)2, as the coefficients of f(x) are non-negative, f(x)
satisfies condition (c), and f(0)--l.

So by (11)

or by Lemma 2

SR(), R(f({)) < P 1,

SR(,),R(f(,)
Hence, by (11)

(12) f(1)
(12) would give a contradiction if m had two different prime

factors, as then f(1)--p, f(1)--p with
So we are reduced to the case m=p, cl.
Again by (8), letting v--kp-2,

p-1 p-1

(13) SR(p), R(f([)) f(’) f(,’/)
(i, p)=l /=I =0

p-1 p-1 p-1

Z Z
k,,=l )v==

But by Lemma 2, i.e. the arithmetic-geometric inequality, this
implies f(.% =1 for (i, p) =1. Similarly, we see that f(,) =1 for
(i, p)---1. So

1 if p-,i
(14) f(Cc)= p if i=0

0 otherwise.

Now compare f(x) with the polynomial

pC-l-1 p-I
F(x) 1 p- x + p- x

=o

We note that F(x) has the identical behavior asf(x)at the p points
in (14). As the degrees of f(x) and F(x) are both less than p% we
must have that f(x) and F(x) are identically equal. As c_2, we
see that F(x) will have non-integral coefficients, which gives a con-
tradiction.
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Section 4.

In this section we shall prove Theorem 2 for t=2, and note that
this proof can be carried over automatically for >2:

ml-1 m2-1
f(x, x2)--- . . ajl

jl=0 j2=0

Assume Theorem 2 is true if w(mm.)h. We note that we
have proved the case when h=l, as then m or m equals 1 and
this falls under the case when t--l. Assume w(mm.)=h+ 1 and let
p lmi, n=ml/p. Let

where
f(x, x)---go, (x, x.) + g, (x, x.)

and gl, p(Xl, X2) contains the other terms of f(x, x.). Denote x---2.
So go, (2, xz) is a polynomial of degree n in 2, of degree <mz in
x and

go, ,(v, v )=1f(v+ni v2
1 m2 9 ’i,=O mi m2

Hence, go,(2,x) satisfies every condition of Theorem 2, except
perhaps condition (c), with ml, m replaced by n, m.

As w(nm)<w(mm) we have by induction that (concerning d,
d, see d in Section 3)

nl/d- 1 m.,./d- 1
go, ,(x[, x.)= . . xlpcljx.dj.

j=0 j=o

Unless d=n, d.=m, as in Section 3 then
m1-1 m.-I

f(x,x.)-- xJxJ’
j=O j.=O

If d=n, d.=m, then

(15) ]’(+n, ’) p
=o ml m2

for all v, v. Then (15) yields a contradiction.
The case when t>2, proceeds precisely as in the case when


