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In this note we shall give the existence theorems on the periodic
solutions of the differential equations

d (a(x)dx)+f(x)dx(
dt -d-t- + g(x) e(t)

dx dx( 2 ) a (X).dt +f(x) +g(x) e(t)

where e(t) is a periodic function of t with the least positive period

and (t)dt=O, and le(t)le. Moreover, we suppose that a(x),

g(x) and e(t) have continuous derivatives and f(x) is a continuous
function.

Of course, the proofs of the following theorems follow from
the fixed point theorem. Therefore, it is sufficient to show that
the existence of a curve which encloses the domain satisfying the
hypotheses of the fixed point theorem.

Theorem 1. Suppose that thefollowing conditions are satisfied"
(a) a (x) 0 for all x

f(x) dx as x -- : respectively.(b) F(x)) :k oo

(c) There exists a positive number xo such that x.g(x) 0

for xl  x0.
Then the equation (1) has at least one periodic solution of period

Proof. We consider a pair of first order equations,
dx Fa(x) -f y- (x) + E(t) y- F(x) + [e. (t) dt

(8)
dy_
dt

-g(x)

instead of the equation (1).
For a positive number , we choose an x-value $(Xo) such

that
F(x) max E (t) + e for x

_
$,

F (x) rain E (t)- e for x

__
and a positive number v such that e/A ($) and v_- e/A (-)

where .4 (w) , (w) g.

Now, we consider three functions
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F1 (x, y) - [y-7 A (x)-
F. (x, y) - [y-A ($)] + (x)
I(x, y) [y-A (-)]+(x)- (P(-$)

where q) (x) a (x) g () dx.

Then we have

for
for
for

dF(x, dy a (x) dx ]Y)=[y-A (x)] --dt
[y A (x)]" + [y A(x)]

{ g (x)- [-F(x) +’A (x) +E (t)]}
dF(x, y) dy dx

dt
[y-’A ($)]-+a(x)g(x) dt

=g (x) [-F(x) +E (t) +A ($)]
dF (x, y)

dt
=g (x) [- F(x) +E (t) + A (- $)].

Accordingly, if we choose ]y-A (x)I sufficiently large, we have
dG,t- 0 for xi ;5$ and

dG(x, y)
dt

0 (i=2, 8) is clear in the sense

of and . Hence, we choose C()0) sufficiently large, and con-
sider three curves

F (x, y)= C for
F(x, y) C for x
Fs(x, y) C for x

These curves enclose either a bounded domain D (it is the case
(x)--> as Ix I-->) or an unbounded domain D. In the first case,

the curve (x (t), y(t)) (t ._0) remains in D if (x(0), y(0))e D. In
the second case, since y is bounded for (x, y)e D, (3) shows that

dx
if we take $ sufficiently large, -- 0 for x $,

dx
dt

0 for

x =-$. Then the same as above is true for the domain (x, y)e D,

Theorem 2. The equation (2) has at least one periodic solution
of period , if the following conditions are satisfied"

(a) a (x) ) 0 for all x,
and x.a(x) > 0 for Ix

_
xo

(b) F(x)/a (x) : oo as x: respectively,
e’a(x)

for x lxo,and F (x) 4a’(x)[g(x)-e(t)]

where F(x) ---I?(x)dx
(c) x [g (x) e (t)] 0 for

where xo is a positive number.
Proof. We consider a pair of first order equations,



546 S. KASAH’ARA [Vol. 29,

d
a (x) a (x) y F (x)

a (x)
d,] a (x) F (x) y + a(x)
-d---- a(x) a-- F(x)-g(x)+e(t)

instead of the equation (2).
First we take $ (_ Xo) such that x.F(x) 0 for x . $.

From the hypotheses we have
a’(x)

4 ’(x) F’(x) [g (x) e (t)] 0

for x$, and hence, there exists a continuous function (x)
which satisfies following inequalities

’()- () F () 0

()

Because, i we denote the .s which always cancel the left side
of the inequality (5), by (x, t), (x, t) ( (x, t) s (x, t))
respectively, then we have

rain (x, t) max (x, t) 2

./a’(x) g+ 4() (x) [ (x)- el O,

and hence, if we take (x) satisfying
rain (, t) (x) max (x, t),

then we have
a(x) e a’(x)

()+ + )F()

o /a’(x) F (x) [g (x)-e] + g (x)

" a (x) o.
Accordingly, for such a (x), we have

j
(x) + dx F (x)

+ ()+ ()+ -. ()+() () ()
0 for .

For x- f, since the inequality (4) is true, and by the con-

dition (b), we can similarly see the existence of a continuous
function @(x) which satisfies the inequality (4) and

(x) + ()o.
In fact, we have
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(x) + g (x) e a’(z)

./a,(x) F’(x)[g (x)- e] + g (x)+ 2 +a-) a () o.
Now, take such a continuous function @(x), then

for x
Next, we consider three functions

y
F (x, y)= for

(x, y)=+ (x) + a (x) gx for $,

I (x y) =+ (x) + dx for

dAs we have seen above, (x,y)0 (i=2, 3) for x

x- $ respectively. On the other hand, for F,(x, y),

dso, if we take }y] sufficiently large, we haver (z, y) 0.

Hence, let C be sufficiently large, and consider three curves,
F, (x, y) C (i 1, 2, 3), then if these curves enclose a bound ed

d
domain, the theorem is clear rom G (x, y) 0 (i 1, 2, 3). In

the case when thes three curves enclose an unbounded domain D,
F(x)

shows that ifsince y is bounded for (x, y) D, dx/dt y-
a(x)

we take $ suciently large, dx/dt 0 for z $ and dx/dt 0 for

Remark. In the above theorem, if two constants and B exist
such that

a’().signx 0 for
[g (z) e (t)] sign x B> O for

then the condition (b) is simplified as follows:

(b’) F(x) as x m respectively.

In fact, from the existence of a and B, and the condition (b’),
it can be easily seen that there exists an x-value $(z) such that:

e’.a(x)F’(x)> for x
4 a’(x)[g(x)-e(t)]


