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91. On the Equivalence of Excessive Functions and
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(Comm. by Z. SUETUNA, M.Z.A., July 12, 1962)

It is well known that the family of nonnegative superharmonic
functions in the classical sense coincides with that of excessive func-
tions associated with a Brownian motion except the fnnction of
identical infinity. In this paper we shall give the exact counterpart
of the above result for a class of Markov processes called regular step
processes. A generalization to more general Markov processes will
be discussed in the ensuing paper.

1. Strict Markov processes. Let S be a locally compact sepa-

rable Hausdorff space and S, the space obtained by adding a death
point to S as an isolated point. The topological Borel field over

S is denoted by

_
and a a-finite measure over (S, _), by /. Define

_-- {Z-completion of _}. W is the set of all the mappings w
any/

from [0, --c to S which satisfies the following conditions" (I) x(w))

is right continuous in t, (2) x+(w)--c, (3) xt(w)--c for every

ta(w)-inf ITS0, xt(w)-- c] and (4) there exists lim xt_,(w) for every

t a(w). For each w and t, the shifted path w+ and the stopped one

w are defined as follows: xt,(w+)-xt/t,(w), Xt,(WT)--Xm(,,t,)(W) for

t’4=--c and x+(w)--c. Let be the Borel field of W generated

by all Borel cylinder sets [w, xt(w) A] (A_) and a(w), a -measurable
random time. Then both (w)--w and (w)-w+ are measurable
mappings from (W,) into itself. We define -F() and +
--+,. A function P(B) defined on S is called a strict Markov

process on S and is denoted by X if it satisfies the following condi-

tions: (X. 1) P(.) is a probability measure on for any fixed x and

Px{xo(W)-x}-I for every x, (X. 2) P.(B) is _@measurable for every

B e and (X. 3) for any Be and for any -measurable Markov time

a(w),2) Px{Px(w B[ +)--Px(B)}-1 for every x. We now define P(B)

1) (w) expresses the value of w at t [0, -c].
2) That is, :(w)>-t}et for every t.
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P(B)(d) and 3- {P-eompletion of 3}. Next taking a -* any/

measurable random time a(w), put -() (), ,- {P-
any/

completion of ] and ,+-- [ +.. The conditions (X. 1)--(X. 3) imply

the following stronger conditions: (X. 1) P.(.) is extended to a prob-
ability measure on and P(xo(w)-x)-I for every x, (X. 2) P.(B)
is _-measurable for every B and (X. 3) for any B and for any
(25-measurable) Markov time a(w),8) Px{Px(w+ B +)-- P.(B)}-- 1 for
every x.4)

Let f be a _-measurable function on S ) and f(o)-0 by defi-
nition. The Green operator G, (a_>_0) of X is defined by G,f(x)

--Ex(le-tf(xt)dt). For any fl>__0, there exists uniquely a strict

Markov process X() (called the fl-subprocess of X)whose Green
operator G) is given by G+ for every a__>0. For any -measurable
random time a, put Hf(x)--E(f(x)). A subset A of S is called
admissible if aA(w)-inf {t>=O, xteA} is a 3-measurable Markov time.
Any open set of S is admissible. A _-measurable function u on S
is called excessive if Htu<=u for every t and Htu--->u (tO). Any
excessive function is nonnegative2

Take an open base cU of S. A nonnegative and _-measurable
function u on S is called cU-superharmonic if, for any UecU,
(1.1) u(x)>=Hcu(x)7) for every x of U.
A cU-superharmonic function u is called U-harmonic if it is finite-
valued and if it satisfies the equality in (1.1) for every x of U such
that P.(ac + c)--1. When u is cU-superharmonic (cU-harmonic) for
some cU, we shall call it superharmonic (harmonic). It should be
noted that our definition of superharmonic or harmonic functions is
confined to nonnegative functions.

2. Excessive functions. We shall here summarize some basic
results on excessive functions to be used later. Most of them were
proved by Hunt 3. As for some new results, we need only simple
modification of Hunt’s method, so that the proof will be omitted.

2.1. If f is a nonnegative .-measurable function on S, the
function u:Gof is excessive. Such u is called Go-potential.

2.2. If u is excessive and u.u, then u is excessive.
2.3. If both u and v are excessive, then u.v is excessive.

3) That is, [(w)t}t for every t.
4) For the proof, the reader should be referred to Dynkin’s book [2].
5) We shall admit f to take +_ o as its value.
6) Put t=+.
7) For an admissible set A, we use the notation HAu instead of Hu.
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2.4. The following three conditions are equivalent to each other.
(1) u is excessive, (2) aGu<=u (>=0) and lim aGu-u. (3) H,u<=u

for any Markov time a, and H.,u(x)-->u(x) for any x of S and for
any sequence of Markov times a such that P(a0)--I.

2.5. If u is excessive and if the Markov times a, a satisfy the
condition that a(w) a(w) with P-probability 1, Hu(x) Hou(x).

:. Regula step pocesses. Let X be a strict Markov process.
It is shown that the first jumping time a(w)-- inf It 0, x(w) x0(w)]
is a Markov time. Therefore the n-th jumping time a(w)--a_(w)
+a(w+,_) is also a Markov time for every n. Put q(x)--[E(a) -and I-I(x,A)--P[x,A], where x is a point of S and A is a _-
measurable set of S. It is well known that P(at)-exp[--q(x)t].
The state point x of S is called trap, sojourn state or instantaneous
state according as q(x)- O, 0 q(x) + or q(x)- + .

3.1. If x is a sojourn state, [I(x, x)-O.
For the brevity, write a(w) instead of a((w). Since

with P-probability 1, we have P.(a0)--I by the assumption and
therefore I-i(x,x)-P(x,-x)-P(x,-x, a0). On the other hand,
P[a(w+)0]-0 from the definition of a. Using the strict Markov
property, we get

E:{P,,(x-- x, a> 0); x-- x}-- P=(x,,-- x, a> O)P(x,-- x)
[l-i(x, x)-=>0.

A strict Markov process is called a regular step process (RSP),
if it satisfies the conditions that every point in S is a sojourn state
and that lim z,(w)>=a(w) with P-probability i for any x. These

conditions mean that almost all the paths of an RSP are step func-
tions, and therefore we can easily establish the potential theory of
the RSP by the same method as in the case of countable Markov
processes (see Doob [1 and the author [4). We shall now intro-
duce several notions concerning RSP’s. The system (q, l-i) induced
by an RSP X is called the canonical system of X and the operator
_,f(x)=q(x)[[If(x)--f(x), the Dynkin generator. A nonnegative
_-measurable function u is called l-I-superharmonic if u__<0 (or
equivalently u_<_u), and I-harmonic if it is finite-valued and u-0
(or equivalently I-Iu= u).

3.2. The canonical system of an RSP satisfies the following
conditions: (1) Both q(.) and (.,A) (for any fixed A)are
measurable functions on S, (2) Oq(x)+, (3) 1-I(x,x)-O and (4)
(x, .) is a measure on S whose total mass does not exceed 1. Con-
versely any (q, I-I)-system satisfying the conditions (1)-(4) is the

8) uv(x)=min (u(x), v(x)).
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canonical system of one and only one RSP.
3.3. The Green operator G. (o>=0) of an RSP is expressed in

the following form"
G,f

(a-q)-[q-(aZTq)-nf
qO

3.4. The fl-subprocess X of the RSP is also an RSP and its
canonical system (q(), 1-i)) is given by q()(x)-fl+q(x) and -I()(x, A)
--fl-q(x) - q(x)(x, A). Moreover its Dynkin generator ) equals

The proofs of these three propositions are quite analogous to
those in the case of countable Markov processes (see 4) and there-
fore will be omitted.

3.5. Any finite-valued H-superharmonic function u is decom-
posed uniquely in the form of u-Gof +v, where f is a nonnegative
-measurable function and v is a -harmonic function. In fact,
f is given by --u and v, by lim nu.

Noting that u is finite-valued and 1-iu decreases monotonely with
n, it is clear that lim 1-iu exists and is l-I-harmonic. Further we

have
N N

1-Inq-(--,)u _-I[u--l--].u--u---+u.
7t--O

Lein N-+, Go(--)--lira u, which poves he exiseee

o he equired deeomposiiom Nex we shall show he uiqueess.
Suppose ha u-Gof+v. Since his Gof is fiie-valued,

=Ex f(x)dt tends to zero monotonely with n. Therefore I-iu
I]Gof+ I-Inv-- 1-iGof+v v. From the arguments in the proof of

the existence, we have Gof-Go(-)u. But, in general, f is uniquely
determined by Gof2 Consequently, f-

The following two propositions result immediately from 3.5.
3.6. Suppose that X is an RSP. Then a finite-valued :-measur-

able function u on S is a Go-potential of X if and only if it is non-
negative and I-Iu 0 (n-->).

3.7. Let f be a nonnegative :-measurable function on S. In
order that the equation --u-f should have at least one nonnega-
tire and finite-valued solution, it is necessary and sucient that Gof
is finite-valued. In this case, Gof is the smallest among nonnega-
tive solutions of the above equation.

9) In fact, Gof(x)=Ex f(xt)dt +Ex f(xt) dt --q(x)-lf(x)/l-IGof(x), so that

()=-(o).
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4. The equivalence of excessive functions and superharmonic
functions for regular step processes. Our main result is now stated in.

THEOREM. Let X be an RSP. Then u is excessive if and only
if it is superharmonic, or if and only if it is 1-i-superharmonic.

It is implied in Proposition 2.4 that any excessive function is
superharmonic. Suppose now that u is superharmonic with respect
to the open base cU. For any fixed x in S, taking U such that

UecU and Ux and putting r=-a, we get P{r-a for some
k0gany k}-I (from 3.1). This shows that lira f(x)=f(x,,) with

P-probability 1 for every function f on S. Moreover it is easily
verified that u--un is also -superharmonic and therefore we have

u,(x)lim inf E(u,(x))E (lim U,(X:))--Un(X).
Letting n+, u(x) u(x), which proves that every superharmonic
function is -superharmonic. Finally suppose that u is 1J-super-
harmonic. Clearly u-un is also -superharmonic. Considering
the fl-subprocess X() of X, we have -- --(fl--)u,> flu,. Ap-
plying Proposition 3.7 to X() and recalling Proposition 3.4, uGg
[--)u.flGg)uflGu. Since X is the RSP and u is bounded,
we get

flG,u(x)--E( :e-tu.(x/,) dt)u.(x),
which shows that u. is excessive (Proposition 2.4). Therefore u is
also excessive (Proposition 2.2). Thus our theorem has been proved
completely.

In conclusion we shall add one comment. Since it is shown that
every RSP satisfies the quasi-continuity from the left,) any Borel
subset A of S is admissible." Combining Proposition 2.5 and the
theorem just proved, we see that the relation uHu holds for every
Borel subset A of S) if u is superharmonic (or -superharmonic).
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10) For the definition, see [2].
11) For the proof, see [2] or [3].
12) This property may be understood as the superharmonicity of the strong (or

global) sense.


