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195. The Theory of Nuclear Spaces Treated
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Science University of Tokyo

(Comm. by Kinjir6 KUNUGI, M. Z. A., June 12, 1971)

In the papers [3] and [4], we defined the neighbourhood having a
rank in the nuclear space , and then we made the a linear ranked
space.

4. The completion of the linear ranked space , (1).
Definition 4. We say that a sequence (g} in ) is R-convergence

having a limiting point zero, i there exists a fundamental sequence of
neighbourhoods (V(0, r, m)} such that g e V(0, r, m) for all i. And

R
we denote it by g 0.

In the paper [4], we defined the equivalence o two R-Cauchy se-
quences in , so that the set of all R-Cauchy sequences in is divided
into equivalence classes. We denote by the set o all these equiv-
alence classes.

Now, suppose , f e q3 and let {gn} and {fn} be two R-Cauchy se-
quences in g) which are in the equivalence classes and f, respectively.
Then {gn +f} is an R-Cauchy sequence. Moreover if (g’} and {fin} are
R-Cauchy sequences equivalent to {g} and {f} respectively, then
{g’-f’} is equivalent to {g+f}. Thus we can define /f as the
equivalence class which contains (g+fn}, and the definition depends
only on , f, not on the particular choice o {g}, [f}. Likewise, for
any scalar 2, we define 2d as the equivalence class which contains {2g}.
The zero element of is the unique equivalence class all o whose mem-

R
bers {gn} are such that g 0.

Now, we shall define a neighbourhood with rank i in .
Definition 5. We define a neighbourhood, I?(0, r, m), of the origin

in . e I?(0, r, m) means that or an R-Cauchy sequence {g} belong-
ing to , there exist some number r’, 0r’r and some integer N such
that the relation n>=N implies g V(0, r’, m). And we call I(0, r, m)
a neighbourhood with rank i of the origin in .

Moreover we define that the neighbourhood with rank 0, which is
denoted by I?0, is always the space .

We shall show that in the definition above, every R-Cauchy se-
quence (g} belonging to ) has some number r’, 0r’r and some
integer N such that the relation n>=N implies gn Vi(O, r’, m).
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Suppose that two R-Cauchy sequences {g} and {f} belong to the
equivalence class and there exist some number r’, 0 r’r and some
integer N such that the relation n>=N implies gn e V(0, r’, m).

By Definition 3 in [4], there exists a undamental sequence

{V(0, r, m)} such that g--f e Vr(O, r, m) or all integer i. By
Lemma 10 in [4], there exists some V(0, r, m) in {V(0, r, m)} such
that V(O,r’,m)V(O,r,m)withmm, i2"andr’r. Andthen
we have V(0, r’, m) Vr(0, rn, mn) Jor n ].

Since r $ 0, there exists some integer such that r--r’ rt, ] and
N 1. And hence or all n l, we have

fn--(f--gn) /g e Vr(0, r, mn)+ V(0, r’, m)
V(O, rn, mn) + V(O, ’, m)c V(O, 9n -min (mn, m)) c V(O, rn - r’, m).

Since rn + r’ r, we assert.
Now, we define I(, r, m)--O + I(0, r, m) as a neighbourhood

in .
Lemma 14. We have r(O, 1, m)-(O, r, m) for any rO and

any neighbourhood (0, r, m).
Proof. Let 0 belong to (0, r, m). Then for an R-Cauchy sequence

{gn} belonging to 0, there exist some number to, Oror and some
integer N such that the relation n>=N implies gn e V(O, ro, m). And
then we have

g/r e V(O, ro/r, m) for n>=N.
Hence it is clear that we have /r e 1(0, 1, m) by Definition 5. Conse-
quently we obtain l(0, r, m)rP(0, 1, m).

Conversely, let belong to rl(0, 1, m). Then we have
(0, 1, m). Hence or an R-Cauchy sequence {g} belonging to d, there
exist some number r0, 0 r0 1, and some integer N such that the re-
lation n >__N implies gn / r e V(O, ro, m).

And then we have g e V(O, rro, m) for n>= N. Hence it shovs that
e I(0, r, m) since 0 rro r. Consequently we obtain

r(0, 1, m)(0, r, m).
Lemma 15. We have (0, 1, m) (0, 1, m) if ]<=i.
Lemma 16. We have (0, 1, m) (0, 1, m) if m’m.
Lemma 1 7. We have (0, r, m) (0, r’, m) if r’ <= r.
Now, we shall define the fundamental sequence of neighbourhoods

in .
Definition 6. When a sequence of neighbourhoods {lri(0 r, m)}

in satisfies the following conditions, it is called the fundamental se-
quence in ,

(1) there exists some integer i0 such that
I(0, r, m) l for 0__< i__< i0,



872 Y. NAGAKURA [Vol. 47,

(2) y_<_y/ or iio and y-,
(3) r>=r/ or iio and r0,
(4) m <_m+ or i i0 andm.
Lemma 18. If {r(0, r, m)} is a fundamental sequence of neigh-

bourhood in , then e V(O, r, m) for every i implies -0.
Proof. By Definition 6, there exists some integer i0 such that

(0, r, m)#0 or iio. Since belongs to r(0, r, m), for an R-
Cauchy sequence {g} belonging to there exist some number l,
Olr and some integer N with ioNN+ such that the relation

nN implies g e V(0, l, m).
I we set V,(O, r’, m’)Vo or OiN,

V,(0, r’, m’) V(0, r,, m,) or N, i N
and

V,(0, r’, m’)-V(0, r, m) for N<= i<N, etc.
Thus since {V,(0, r’, m’)} is the undamental, the R-Canchy se-

quence {gn} belongs to the zero element in .
Lemma 19. (1) (0, r, m) is circled.
(2) l(0, r, m) / 1(0, r’, m) c= l(0, r/ r’, min (m, mg).
Proof. (1) Let belong to l?(0, r, m). Then by Definition 5,

there exist some number r0, 0< r0 <r and some integer N such that the
relation n>=N implies g e V(0, r0, m). Since V(0, r0, m) is circled, the
relations n>=N and al<_- 1 imply that cg belongs to V(0, r0, m). Con-
sequently, aO belongs to (0, r, m).

(2) The relations e I>(0, r, m) and f e 1(0, r’, m’) imply that for
two R-Cauchy sequences {g} e and {f} e f, there exist some numbers

r0 and r’0 with 0 < r0 <r and 0 < r0’ < r’ respectively, and some integer N
such that the relation n>=N implies g e V(0, r0, m) and fn e V(O, r’o, m’).
And hence we have, or n>_N, g/f e V(O, r0, m)+V(0, r’0, m’)
c V(0, r0+ r’0, min (m, m’)). Since the R-Cauchy sequence {gn +f}
belongs to +f, we have +f e (0, r + r’, min (m, m’)).

We can show in the same manner in [4], that the ranked space

is the linear ranked space.

Theorem 1. The linear ranked space is complete, that is, any

R-Cauchy sequence of elements in has a limiting element in .
Proof. Let {} be the R-Cauchy sequence in . Then by Defini-

tion 6, there exists a fundamental sequence {l(0, r,m)}, where

(0, r, m)--0 or O<_i<_io and ?(0, r, m)4:?0 or iio, such that
the relations k>=i and h>=i imply --n e (O,r,m). If two R-
Cauchy sequences {g()} and (g()} belong to and respectively, the
R-Cauchy sequence {g)--g(} belongs to (-). Hence by Defini-
tion 5, there exist some number r, 0rr and some integer N such
that the relation n>=N implies g)--g) e V(O, r, m).
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On the other hand, since {g)} is an R-Cauchy sequence in , there
exists a undamental sequence of neighbourhoods, {V()(0, r), m))}
in such that the relations n>=i and m>=i imply

g(k)_g) V()(O, r, m()).
And 2or all integer k we can take Vr,(0, r’, m’) in {V()(0, r),

m)} such that ’ k, r’ 1 / k and m’ k, where y’ y’+, r’r’
and m’ m’+.

And then we make -) satisfy that the relation n>n(k) implies
g( g Vr,(O, m’).n() r

If we set f-g(), {f} is an R-Cauchy sequence in . Because, let
V(0, R, m)# V0 be a arbitrary neighbourhood of the origin in . Since

{V(0, r, m)} is the fundamental sequence of neighbourhoods, we can
find V(0, re, m) such that V(O,R, m)V(O, r, me) and

Since the relations k] and h] imply --d e r(0, r, m), there
exist some number r-r(k,h), Or4r and some integer N=N(k,h)
such that the relation nN implies g)_gn) e Vr(O, r, m).

And then we have, or nmax (N(k, h), n(k), n(h))

e V,(O, r’, m’)+ V(O, r, m)+ V,(O, r’, m’).
Since we have 7’) k, r’ 41/k and m’ k or any integer k, we

can take k and h such that ’, 7’, m’m, m’)m and
v’ + r’ + r 1/k+ 1/h + r R. And hence we obtain

V.,(0, r’,, m’)+ V(0, r, m)+ V,(0, r’, m’)
V(0, r’ + r+ r’, m)V(0, R, m)V(0, R, m).

Consequently (f} is an R-Cauchy sequence by Lemma 13 in [4].
Now, we shall prove that if the R-Cauchy sequence (f) belongs to

f in , f is a limiting element of the R-Cauchy sequence
We have known the ollowing acts in the proof above.
(1) For any V(0, r, m) in (V(0, r, m)} there exist some number

v, Orr and some integer N such that the relations mN, li and

ki imply g)-g) e V(O, r, m).
(2) The relations m] and l] imply

g) gl) e V()(O, rl),
(3) The relation mn(1) implies

And then or any V(0, r, m) and any integer ki, we take ] and
such that 1/1 + r+ r) <r, m) >m, m’>m, T(k) >T and T’ > T.

Moreover we can take and m such that l>max(],i) and
m>max (n(1), N,

Hence we have or all/max (], i) and ki,

f gl) -()() gl) (-(),() g)) + (g) g)) + (g)
e V,,(O, r’, m’)+ V,,(O, r, m)+ V,(,)(O, r}), m}))
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c V(O, r’, m)+ V(O, r, m)+ V(O, r}), m)
V(O, r’ + r + r., m) V(O, 1/1 + r + r, m).

And then the relation k>__i implies f--d I(O, r, m).
Consequently the proof is complete.

References

1] K. Kunugi: Sur la mthode des espaces ranges. I, II. Proc. Japan Acad.,
42, 318-322, 549-554 (1966).

2 M. Washihara: On ranked spaces and linearity. II. Proc. Japan Acad., 4,
238-242 (1969).

[3 Y. Nagakura: The theory of nuclear spaces treated by the method of
ranked spaces. I. Proc. Japan Acad., 47, 337-34.1 (1971).

4 ----: The theory of nuclear spaces treated by the method of ranked space.
II. Proc. Japan Acad., 47, 342-345 (1971).

5] I.M. Gel’land and N. Ya. Vilenkin: Generalized Functions, Vol. 4 (1964).


