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221. Note on the Asymptotic Normality of a Stochastic
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By Motoo HoRI and Tetsuo FUJIMAGARI
Tokyo Institute of Technology

(Comm. by Kinjir6 KUNUGI, M.J. A., Oct. 12, 1971)

1. In the present paper we are concerned with the continuous
analogue of the classical central limit theorem. The Lindeberg theo-
rem establishes necessary and sufficient conditions under which sums
of mutually independent random variables are asymptotically normally
distributed. We shall show that the normal convergence law of the
Lindeberg type holds for a stochastic process with independent incre-
ments, which is essentially the continuous parameter version of a se-
quence of consecutive sums of mutually independent random variables.
In some practical applications, it is of real importance to determine
limiting distributions for continuous parameter processes with inde-
pendent increments [1] [2].

2. Let {x;,t>0} be a continuous parameter process with inde-
pendent increments which is not necessarily temporally homogeneous.
In what follows, we assume that x,=0 and that there are no fixed points
of discontinuity. As is well known [3], the characteristic function of
x; has the form

E(ei(zg) — e(o((,t)’
2 . .
s )=1Lm(t ~Eo j (ei‘"-1—— icu ) du).
(L, y=1{m(t) > ® + . 11 v,(dw)
Here m(t) is a continuous function of ¢, v*%(t) is a non-negative, mono-
tone non-decreasing, and continuous function of ¢, and v, (du)

(1)

_=_r v(dtdu) is a measure on (— oo, o0)\{0} satisfying v({t} X du)=0 and
=0 . u2
(2) J_wmv,(du)< 0.
The following lemma can be verified directly from the formula (1).
Lemma 1. If E(x,? is finite, or equivalently,
(3) r’ W, (du) < oo

for all t>0, then the expectation p(t)=E(x,) and the variance a(t)
=Var (x,) are given by

() po=mo+] L@, oH=v0+ | ).
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We now obtain a continuous analogue to the classical central limit
theorem.

Theorem 1. Let a¥(t)<oco for all t>0. In order that for any
real x

t) e
(5) P{x‘ 2 <x} ——»@(x):—_; P
a(t) V2r
as t—oo, it is necessary and sufficient that the Lmdebe'rg type condition
1
6 __j w,(du)—0,  t—
(6) (1) J1ut>eety wyi(dw) t=eco

be satisfied for every fixed ¢>0.

Proof. Defining ¥({, t) by
( 7 ) E[eiC(x;—,u(t))/v(t)]=eﬂ'(t,t)’
we have from (1) and (4)

w1 ¢
WG, = —ig D +‘”[o(t) t)

p) | omt) L)
Lo T w2 e

(8)
oy Ll ott)
+I_w{e““’ 1- BT, )
__&.r
== 5+ [T mC e,
where
(9) (A t):.eztu/am__l_i(}i_‘_ Lt

o(t)  206%(t)
The assertion (5) is thus equivalent to the statement that for all

10) lim h(C » U, Dy, (du)=0.

tooo J —

Sufficiency. It is easily shown that

— | pttusetey _ 1 _ iCu i |&%’)
) [, u, t)|=|e 1 5 20D |~ 60%)
tcusalt) | iCu Czuz &w’
W Dis|en—1= Bl < oty
Therefore,
" e u, v
ICF s € 2
(12) < 603(t) luISsa(t)lul vildu) + a¥(t) Iul>w(t)u vi(du)
gﬂ+£— wv,(du).

6 Uz(t) lul>ea(t)
The factor of {? is the expression occurring in the condition (6), and ¢

can be chosen arbitrarily small, so that the integral on the left side
tends to 0.
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Necessity. Taking the real part of (10), we get
& r uzut(du)—f {l—cos C_u} v, (du)
—o0 lul|<Lea(t)

204t t
13) a*(t) Cu a(t)
= 1-— =7
Ilul>w(t) { cos O'(t)} pt(du) t 0(1)
as t—oo. By the inequalities
(14) 1—cos &% < &% 1 cos E% <o
a(t) ~ 20%t) o(t)
it follows that
CZ = du) — Cz 2
5 202(t)j = Ve P

<2 v +om<Z +o.
lu|>ea(8) e
Dividing (15) by {?/2 we see that

(16)

J_J 2 (du) < 2
o(t) |u1>=a<c>u Vi) < e¥?

The left side is independent of { while the right side can be made arbi-
trarily small by choosing { sufficiently large. Hence the left side tends
to 0, which completes the proof.

Remark. Theorem 1 is simpler than the Lindeberg theorem for
sums of independent random variables, since in the continuous param-
eter case the condition that normalized summands are individually
negligible or infinitesimal [4] is automatically satisfied.

Corollary 1. If the process {x;} is homogeneous in time, then (5)
holds.

This is an immediate consequence of Theorem 1 with o*(t)=tc*1)
and y,(dw)=1ty,(du).

Corollary 2. Suppose that for some k>2

+0(1).

an r Ul vy(dw) < co.

Then, the condition (6) is satisfied whenever
1 o

(18) ) Jut @0

as t—oo. (Ljapunov’s sufficient condition).
The proof proceeds as follows:

_l_j % (d <Lj : __u__r—z
a¥(t) |u1>w<t)u 2l u)—az(t) |u|>so(c)u eo(t)

|ul® v, (du)—0.

v, (du)

(19) L[
- sk—Zo-k(t) o
Theorem 2. If (6) holds for each fixed ¢ >0 and v {(— o0, c0)}=0,

then o(t)—oo as t—oo.
Proof. Suppose that there exists a number a such that o(t)<a<oo
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for all t. From (6) we find
(20) j Wy (du) < j W (du)—0,  t—oco.
ul>ea lul>ea(t)

Since ¢ >0 is arbitrary and v,(du) is non-decreasing in £, it can be con-
cluded that

(1) j " wv (=0,

which leads to y,{(— o0, c0)}=0. This is a contradiction.

3. We next consider a continuous parameter process {X,, >0}
with independent increments which has no fixed points of discontinui-
ty. Note that X, is not necessarily required to be zero. However, the
characteristic function of the random variable z,=X,—X, may be
written in the same form as (1).

Lemma 2. Let E(x}) and E(X?) be finite, and put *(t)=Var (x;)
and S¥(t)=Var (X,). Then S(t)—co as t—oo, if and only if o(t)—oco.
In this case, S(t) ~ o (t).

Proof. Let us consider the covariances Cov (X,, ;) and Cov (X,
X,). It is evident that
22) |S*(0) —S*(t) + 0*(t) |=2 | Cov (X,, )| < 28(0)a (2),

1S%(0) + S*(8) — 0*(H) | =2 | Cov (X, X,)|<2S(0)S (),
whence either g(t)—oco or S(f)—oco implies o(t)/S(t)—1.

Hereafter we shall add the following assumption: X, is independ-
ent of z,=X,—X, for all ¢>0; namely, {X,} forms a spatially homo-
geneous Markov process.

Theorem 3. Suppose that S(t) < oo and S(t)— oo as t— oo, and put
M({)=E(X,). Then for every fixed x,

X, — M)

23 LAY —Q s —00,
(23) P{ S gx} (x) t—co
if and only if for any given ¢ >0

1
24 —— 2 — —s00.
4 S(t) «[Iu[>sS(t)u vi(du)—0, b0
Proof. We start from the obvious equality
(25) X, —M@®) — wz—/«e(t) o(l) + X,—M(0) .
S(t) o) S@) S(t)

Lemma 2 means that the factor o(t)/S(f) in (25) tends to 1 as t—co.
From the independence of x, and X, therefore, it follows that the as-
sertion (23) is equivalent to (5). On the other hand, the two conditions
(6) and (24) are equivalent to each other, because for large ¢ and any
e>0
1 ) o¥t) 1
S¥(t) I1u|>ssmu vildw)< S¥(t) 0*(t) J1ui>eo
1 St 1

wi,(du) <
G¥(t) J 1w « )—oz(t)SZ(t) 11> (/2) S (6)

w'y,(du),

(26)

uy,(du).
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The validity of this theorem is thus guaranteed by Theorem 1.
Theorem 4. (a) Inthecase where vy {(— o, c0)}z0, the condition
(24) implies that S(t)— oo as t—oo.
(b) Suppose that (23) holds and lim S(t) <oco. Then v,{(— oo, o)}

t—o

=0; in other words, X, is continuous in t with probability one. Fur-
thermore, X, has a normal distribution.*

(© If v{(—o0,0)}=0 and X, is normally distributed, then the
statement (23) is true.

Proof. The proof of (@) is exactly similar to that of Theorem 2.
The assertion (¢) requires no comment. To prove (b) we consider the
characteristic function
(27) E[eiCS(t)/a(t)-(X;—M(t))/S(t)] ___E[eic(xb—#(t))lv(t)] . E[eiC(Xo'-M(O))/a(t)].

The left side converges to exp [—(B/A)?-{?/2], where A=Ilim g(f) <oo
t—ro0
and B=Ilim S(#)<oco. In addition, the second factor on the right con-

t—ro0

verges to FElexp (:{{X,—M(0)}/A)]. Hence the random variable
{®;— p(®)}/o(t) converges in law as t—oo. According to Cramér-Lévy’s
theorem [5], the assertion (5) holds and X, has a normal distribution,
so that v,{(—o0, 00)}=0 by Theorem 1 and Theorem 2. The proof is
accomplished.

Acknowledgement. The authors are much indebted to Prof. K.
Sato for suggesting the proof of Theorem 2.
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