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209. Hypersurfaces of a Euclidean Space R'™

By Susumu TSUCHIYA and Minoru KOBAYASHI
Department of Mathematics, Josai University, Saitama

(Comm. by Kinjiré KuNUGI, M. J. A., Sept. 18, 1971)

Introduction. K. Yano and M. Okumura [5] have shown that the
existence of the so called (f, 9, u, v, A)-structure on hypersurfaces of an
almost contact manifold and on submanifolds of codimension 2 of an
almost Hermitian manifold.

D. E. Blair, G. D. Ludden and K. Yano [1] have studied complete
hypersurfaces immersed in S***! and showed that (1) if the Weingarten
map of the immersion and f commute then the hypersurface is a
sphere, and (2) if the Weingarten map K of the immersion and f sat-
isfy fK+Kf=0 and the hypersurface is of constant scalar curvature,
then it is a great sphere or S™ x S™.

On the other hand, Y. Y. Kuo [2] has shown the existence of an
almost contact 3-structure on R‘"** and that of a Sasakian 3-structure
on S‘m*3 and on the real projective space P‘™*3,

The main purpose of this paper is, after showing that an orientable
hypersurface of a Hermitian manifold with quaternion structure admits
an almost contact 3-structure (¢;, &, 12, 1=1, 2, 3, to classify complete
hypersurfaces of R*" satisfying ¢,H—H¢,=0, i=1, 2,3 and those sat-
isfying ¢, H+ H¢,=0, i=1,2,3. The results are:

Theorem 1. Let N be a complete hypersurface of R*™(m=2). If
the Weingarten map of the immersion and ¢;, i=1, 2,3 commute, then
N is one of the following

(i) a hyperplane,

(ii) a sphere,

(i) R“x8"*3, t+s=m—1, t=1, s=0.

Theorem 2. Let N be a complete hypersurface of R™(m=1). If
the Weingarten map H of the immersion and ¢, satisfy ¢.H-+Hep,=0,
then it is a hyperplane.

For the case m=1 in Theorem 1, we have, as a corollary,

Corollary. Let N be a complete hypersurface of R'. If the
Weingarten map of the immersion and ¢;, 1=1, 2, 3 commute, then N
18 either a hyperplane or a sphere.

1. Preliminaries. First, let M =M'" be a differentiable manifold
with quaternion structure (@,, @,), where a quaternion structure is, by
definition, a pair of two almost complex structures @,, @, such that
(1) 0,0,+0,0,=0.
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It is known that there exists a Riemannian metric G such that

(2) GO X, 0.Y)=G(9,X,0,Y)=GX,Y).

We call a manifold with @,, @, and G satisfying (2) a Hermitian mani-
fold with quaternion structure. If, furthermore, G is Kaehlerian with
respect to both @, and @,, such a manifold is called a Kaehlerian mani-
fold with quaternion structure. R'™ is an example of a Kaehlerian
manifold with quaternion structure. If we put @,=@,0,, then @, is also
an almost complex structure and @,, i=1, 2, 3 satisfy

(3) 0,0,=—0,0,=0y,

where (4, 7, k) is any cyclic permutation of (1, 2, 3).

Secondly, let N=N***® be a differentiable manifold with an almost
contact 3-structure (@;, &;, 1,), =1, 2, 3, where an almost contact struc-
ture is, by definition, a pair of three almost contact structure (¢;, &, 7.,
1=1, 2, 3 satisfying

(&P =1,&) =§,

& =—P,6:=Ex
L NioPy=—";0 =71,

Py —E®n;=—P P+ ;0= Ps,
for any cyclic permutation (4, 7, k) of (1, 2, 3).
There exists a Riemannian metric g such that
( 5) 9(51, X):—?'h(X),
(6) 99X, $;Y)=9(X, Y)—0,(X)n,(Y),
(t=1,2,3), for any vectors X and Y. This metric is called an associ-
ated metric of the 8-structure. If, furthermore, &, (1=1,2,3) are
mutually orthogonal Sasakian structure, such a structure is called a
Sasakian 3-structure.

2. Hypersurfaces of a Hermitian manifold with quaternion
structure. Let M=M*" be a Hermitian manifold with quaternion
structure (9,, @), 1=1,2,3, N=N'""! be an orientable hypersurface of
M and 7 : N—M be its imbedding. If we put
(1) 9(X, ¥)=G(x, X, 7,Y),
then ¢ is a Riemannian metric on N.

Let C be a field of unit normals defied on z#(N) and put (¢, &;, %.),
1=1,2,3 by
(9) 0,C=—r.§,;,
then we can easily see that (¢, &, 1), 1=1, 2, 3 satisfy (4) and g satifies
(5) and (6). Thus, we have

Proposition 1. An orientable hypersurface N of o Hermitian
manifold with quaternion structure admits an almost contact 3-struc-
ture and the natually induced metric g on N is an associated metric of
the above almost contact 3-structure.
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Now, we assume further that M is a Kaehlerian manifold with
quaternion structure. We put
(10) Voxm Y=1,7 Y +MX, Y)C,
"y V.xC=—n,HX,
where ¥ is the Kaehlerian connection of G, (X, Y) is the second funda-
mental form and H is the corresponding Weingarten map.
Calculating both 7, ®,7,Y and 7, ®,C in two ways, we have
V.x0, Y=m,0F Y +19,FVY)C—WX, Y)r &,
=T [V x0)Y + OV xY —ny(Y)HX]+(V xn)(Y) + 5,7 xY)
+ h(X’ ¢iY))C’
V.x0.C=—mr,p;HX —9(HX)C
= —W*foi—h(X, £)C,
from which we have

12) Vx9)Y =0(Y)HX — KX, Y)&,,
14) VX$i=¢¢HX-

The following lemmas are needed later.

Lemma 2. If H¢,=¢;H, i=1,2,3, then &, &, and &, are the
characteristic vectors of H and the corresponding characteristic roots
are the same, that is we have
for some scalar A.

Proof. By assumption, we may put H§;=4,&; (1=1,2,3). Thus,
using (4) and (6) we have

Ai=9HE;, E)=9(d.HE;, §r&) + Ne(HED (&)
=9(H¢k€i, ¢k€i)
=g(HE I
=4;. q.e.d.

Lemma 3. If Hp,=—¢,H, i=1, 2, 3, then &,, &, and &, are the
characteristic vectors of H corresponding to the characteristic root 0.

Proof. Asin Lemma 2, we may put H§, = p,§,,©=1,2,3. Then
we have

pi=9HE,, E)=9(DHE,, &) +u(HEDNL(EY)

= _g(H¢k517 ¢lcfi)

=—g(HE s 13 D)

=—Hj
which implies z;=0, (=1, 2, 3). q.e.d.

3. Proofs of Theorems. Let N be an orientable hypersurface of

R'm,  Hereafter we use the same notations which were used in the
previous section by identifying R‘* with M. Then the Codazzi equa-
tion of the hypersurface can be given by
16) VH)Y=F,H)X.
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Proof of Theorem 1. Setting Y equal to &, in (16), we have

amn VyHE =W DX.
But, since
(VXH)Si:VXH‘Si—Hngi
=D&+ AV x&;—HV x&, (by (15))

=D&+ 29, HX —Hp,HX (by (14))
=&+ 29, HX — ¢, H'X,
we have
(18) Ve DX=F &+ 29, HX — . HX.
Setting X equal to &, in (18), we have
(VeiH)Ek:(Veklz)si +¢1H€k_¢iH2$k
= (Vekl)i + 2205 — 295
= (Vek;t)‘Si .
Since éiH)S k=, H)E, by the Codazzi equation, we have
(Vek2)€£:(Vei2)Ek,
which implies
19) V.A=0,
(20) 7 H)EL=0.
Therefore, taking account of V', §;=¢,HE,=1¢,§,=0, we have from (18)
VxA=g((7: DX, £))
zg(VeZHX, 51)'—‘9(HV51X) Si)
=7, (9(HX, E))— 9. X, HE)
=Zg(l7€iX, ft)—lg(VeiX, &) (by (19))
=0.
Hence 4 is constant and consequently (18) reduces to
1 (VeiH)legbiHX—nginX.
Let {e,, @€, Pr€s, sy, &1y €5, &5} be an orthonormal basis which diago-
nalizes H. We denote the principal curvature corresponding to e, by
a, that is also the principal curvature corresponding to ¢,e,, ¢,e, and
o.e,, since Hp,=¢,H, i=1,2,3. Consider V', H as a tensor of type (1,1)
onN. By (20), &, i=1, 2, 3 are characteristic vectors corresponding to

the characteristic root 0. Let X =§_} (ase;+bypies+ csre.+ ddqe,) be a
s=1

characteristic vector of V. H other than &, £, and &,. Let 8 be its cor-
responding characteristic root. Then we have (. H)X=pX. But the
left hand side can be calculated as

Ve EDX=¢.H 3 (ase,+be,+cpue,+ d.pqes)
—¢.H* 3 (a8, + b,p.e,+ c,P.e, + dbse)
=>{a,(A—a)ep.e,—a,(A—a)be,+ ad—ay)cpqe,

- as(l - as)ds¢2es}:
by virtue of (21) with i=1 and (4).
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Thus, comparing the coefficients of e,, ¢.e,, d.e, and ¢,e, of the above
equation we have
lBas + as('z - as)bs = 0)
as(l - as)a’s— ‘Bbs = 03
Be,+a(A—ay)d,=0,
a(A—a)e,— Bd,=0.
Since X0, we must have
‘82 + a:.\rz('2 - (xs)2 =0
from the theory of a system of linear equations.
Hence we have 8=0 and consequently (21) with =1 reduces to

(22) A HX — ¢ H* X =0,
for any vector X on the hypersurface.
Therefore, putting X=e,, s=1,...,m—1, we have «a,(1—a,)=0,

which shows that the hypersurface has distinet principal curvatures at
most two and they are constant. There are three possibilities: if 1=0,
then all &, are automatically equal to 0 and the hypersurface is totally
geodesic thereby it is a hyperplane. If 1+0 and none of «, are 0, then
all «, are equal to A and the hypersurface is totally umbilical thereby
it is a sphere. The last possibility gives that the hypersurface is
R xS+ t4+s=m—1, t=1, s=0 by the same argument as in [4], which
completed the proof.
Proof of Theorem 2. We have
ViH¢,Y =W xH)$, Y + HV x¢,)Y + Hp,V Y
=WH)$; Y+ Hn(YHX - X, Y)EN+HoV Y  (by (12))
=WyH)$, Y +n(Y)H' X+ Hop,V yY (since HE,;=0).
But, since Hp, Y = —¢,HY, we have
VyH), Y =—V ¢, HY
=—W3p)HY — ¢,V xH)Y —p,HV Y
=—(HY)HX -WX, HY)E)— ¢V xH)Y —,HV x Y
=g9HX,HY)—-¢:(VxH)Y —,HV Y.
Hence we have
VxH)$,Y +0(Y)H' X =9(HX, HY)§;— ¢,V xH)Y .
Thus we have
(23) 9(VxH)¢,Y,§)=9(HX, HY).
But we have
9V xH)¢,Y, &) =9V, yHX, ) (by (16))
:VqSiY(g(HX’ E))—9(HX, V¢iY5i)
=—9(HX, p.Hp,Y)
=g9g(HX, ¢/HY) (since Hp;= — ¢, H)
=—g(HX,HY) (by (4)),
which, together with (28), implies H=0 and hence the hypersurface is
totally geodesic thereby it is a hyperplane.
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