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209. Hypersurfaces of a Euclidean Space R
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Department of Mathematics, Josai University, Saitama

(Comm. by Kinjir6 KUNU(I, M. Z. A., Sept. 13, 1971)

Introduction. K. Yano and M. Okumura [5] have shown that the
existence of the so called (f, g, u, v, 2)-structure on hypersurfaces of an
almost contact-manifold and on submanifolds of codimension 2 of an
almost Hermitian manifold.

D. E. Blair, G. D. Ludden and K. Yano [1] have studied complete
hypersurfaces immersed in S+ and showed that (1) if the Weingarten
map of the immersion and f commute then the hypersurface is a
sphere, and (2) if the Weingarten map K of the immersion and f sat-
isfy fK+Kf0 and the hypersurface is of constant scalar curvature,
then it is a great sphere or SnS.

On the other hand, Y. Y. Kuo [2] has shown the existence of an
almost contact 3-structure on R+ and that of a Sasakian 3-structure
on Sa+ and on the real projective space P+.

The main purpose of this paper is, after showing that an orientable
hypersurface of a Hermitian manifold with quaternion structure admits
an almost contact 3-structure (i,, ,, ],), i= 1, 2, 3, to classify complete
hypersurfaces of Rt satisfying H--Hq--O, i= 1, 2, 3 and those sat-
isfying H+H--0, i- 1, 2, 3. The results are"

Theorem 1. Let N be a complete hypersurface of R4(m>=2). If
the Weingarten map of the immersion and , i= 1, 2, 3 commute, then
N is one of the following

( a hyperplane,
(ii) a sphere,
(iii) R4tS4s/3, t+s=m--l, t>=l, s>=O.
Theorem 2. Let N be a complete hypersurface of R4"(m>=l). If

the Weingarten map H of the immersion and satisfy H+H=O,
then it is a hyperplane.

For the case m--1 in Theorem 1, we have, as a corollary,
Corollary. Let N be a complete hypersurface of R4. If the

Weingarten map of the immersion and , i= 1, 2, 3 commute, then N
is either a hyperplane or a sphere.

1. Preliminaries. First, let M--M be a differentiable manifold
with quaternion structure (, ), where a quaternion structure is, by
definition, a pair of two almost complex structures , such that
( 1 ) q)fl2 +2q- O.
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It is known that there exists a Riemannian metric G such that
( 2 G(qX, Y)-G(q%.X, QY)-G(X, Y).
We call a manifold with q, q. and G satisfying (2) a Hermitian mani-

fold with quaternion structure. If, furthermore, G is Kaehlerian with
respect to both q and q, such a manifold is called a Kaehlerian mani-

fold with quaternion structure. R4 is an example of a Kaehlerian
manifold with quaternion structure. If we put-, then is also
an almost complex structure and , i-1, 2, 3 satisfy
( 3 ) =- ,
where (i, ], k) is any cyclic permutation of (1, 2, 3).

Secondly, let N=N+ be a differentiable manifold with an almost
contact 3-structure (, $, ), i= 1, 2, 3, where an almost contact struc-
ture is, by definition, a pair of three almost contact structure (, , ),
i= 1, 2, 3 satisfying

($)=($)=0,
(4) J=

for any cyclic permutation (i, ], k) of (1, 2, 3).
There exists a Riemannian metric g such that
( 5 ) g($,, x)= w(x),
( 6 ) g(,X, ,Y)=g(X, Y)--w(X)w(Y),
(i= 1, 2, 3), for any vectors X and Y. This metric is called an associ-
ated metric of the 3-structure. If, furthermore, $ (i=1,2,3)are
mutually orthogonal Sasakian structure, such a structure is called a
Sasakian 3-structure.

2. Hypersurfaces of a Hermitian manifold with quaternion
structure. Let M=M be a Hermitian manifold with quaternion
structure (@,, G), i=1, 2, 3, N=N-’ be an orientable hypersurface of
M and : NM be its imbedding. If we put
( 7 ) g(X, Y)=G(.X, .Y),
then g is a Riemannian metric on N.

Let C be a field of unit normals defied on (N) and put (,,
i-- 1, 2, 3 by

( 8 ) ,.X==.,X+ w(X)C,
( 9 OC=-.$,
then we can easily see that (, $, ,), i= 1, 2, 3 satisfy (4) and g satifies
(5) and (6). Thus, we have

Proposition 1. An orientable hypersurface N of a Hermitian
manifold with quaternion structure admits an almost contact 3-struc-
ture and the natually induced metric g on N is an associated metric of
the above almost contact 3-structure.
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Now, we assume further that M is a Kaehlerian manifold with
quaternion structure. We put
(10) .x.Y=.gxY/ h(X, Y)C,
(11) ,xC- rc,HX,
where is the Kaehlerian connection o G, h(X, Y) is the second unda-
mental form and H is the corresponding Weingarten map.
Calculating both .x.Y and .xC in two ways, we have
.xq7,Y--r.gxY+ y(gxY)C- h(X, Y)7.$

.[(Fx)Y+VxY-(Y)HX] + ((gx)(Y) + ](VxY)
+ h(X, Y))C,
.C z.HX--w(HX)C

z,$-h(X, $)C,
from which we have
(12) (Fx)Y--y(Y)HX-- h(X, Y),
(13)
(14) gx-HX.

The ollowing lemmas are needed later.
Lemma 2. If H-H, i-l, 2, 3, then 1, . and 3 are the

characteristic vectors of H and the corresponding characteristic roots
are the same, that is we have
(15) H=2 (i=1, 2, 3),
for some scalar

Proof. By assumption, we may put H$-2i (i--l, 2, 3). Thus,
using (4) and (6) we have

2-g(H, )-g(H, qi) +(H)/()
g(Hgi,
g(H, )
=. q.e.d.

Lemma 3. If H----H, i=l, 2, 3, then , . and 3 are the
characteristic vectors of H corresponding to the characteristic root O.

As in Lemma 2, we may put H$--,a$, i-l, 2, 3. ThenProof.
we have

[,-- g(H,, )-g(kH$,,)+](H$,)]($,)
=--g(H,
--g(H, )

which implies --0, (i= 1, 2, 3). q.e.d.. Proofs o Theorems. Let N be an orientable hypersur2ace of
Rt. Hereafter we use the same notations which were used in the
previous section by identifying R with M. Then the Codazzi equa-
tion of the hypersuHace can be given by
(16) (FxH)Y--(FrH)X.
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Proof of Theorem 1.
(17)
But, since

Setting Y equal to $ in (16), we have
(VxH)--(VH)X.

(VxH)$ VxH$ HVx$
--(Vx2) +2Vx--HVx (by (15))
--(Vx2)$/2HX--HgIHX (by (14))
(Vx)+2HX--HX,

we have
(18) (VH)X=(Vx2)+2HX--HX.
Setting X equal to $ in (18), we have

(VH)$-(V2)$+

Since (VH)$-(VH)$ by the Codazzi equation, we have

which implies

(19) --0,
(20) (GH)-0.
Therefore, taking account of g$ H$ 0 0, we have from (18)

Vx-g((VH)X,
:g(VHX, $)--g(HV,X, )
=V(g(HX, $))--g(gX,
=g(ff,X, )--g(V,X, $) (by (19))
0.

Hence is constant and consequently (18) reduces to
(21) (VH)X=HX--OHX.
Let {G, e, e, G, $, $, $} be an orthonormal basis which diago-
nalizes H. We denote the principal curvature corresponding to e by

that is also the principal curvature corresponding to e, e and
e, since H-H, i--1, 2, 3. Consider V,H as a tensor of type (1,1)
on N. By (20), , i= 1, 2, 3 are characteristic vectors corresponding to

the characteristic root 0. Let X-- (Ge+ be+ce+d5e) be a

characteristic vector of G1H other than G, G and $. Let fl be its cor-
responding characteristic root. Then we have (VH)X-fiX. But the
left hand side can be calculated as

--H (ae+be+ce+de)
(( )ae--( )be+( )ce

by virtue of (21) with i-1 and (4).
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Thus, comparing the coefficients of e,, e, 2e and 3e of the above
equation we have

a+ a(, x)b O,
o(2 a)a- flb O,

c(2-c)c- fld-- 0.
Since X0, we must have

+ a(2 a)-0
from the theory of a system of linear equations.
Hence we have fl-0 and consequently (21) with i= 1 reduees to
(22) 2HX-,HX-O,
or any vector X on the hypersurfaee.
Therefore, putting X-- e, s- 1, ., m-- 1, we have a(2-a)- 0,
which shows that the hypersurfaee has distinct principal curvatures at
most two and they are constant. There are three possibilities" if 2-0,
then all a are automatically equal to 0 and the hypersurfaee is totally
geodesic thereby it is a hyperplane. I 2 0 and none of a are 0, then
all a are equal to 2 and the hypersuraee is totally umbilical thereby
it is a sphere. The last possibility gives that the hypersurfaee is
R4tS+, t+s-m-1, tl, sO bythe same argument as in [4], which
completed the proof.

Proof o Theorem 2. We have
H,Y-(H)Y+H(V)Y+H,Y

=(VxH)Y+H(,(Y)HX-- h(X, Y),) +H,VxY (by (12))
=(VxH)Y+ (Y)HX+HVxY (since

But, since HY----HY, we have

VxHY-- --VxHY
()HY-(H)Y-,HY
(v(HY)HX-- h(X, HY)$)--,(H)Y--

=g(HX, HY)-(VxH)Y--,HVxY.
Hence we have

(gH).Y+ v(Y)HX g(HX, HY)$--(gH)Y.
Thus we have
(23) g((H)Y, $,)--g(HX, HY).
But we have

g((VxH)Y, )-g((VrH)X, ) (by (16))
=g,(g(HX, $))-g(HX,
=--g(HX,HY)
g(HX, ,HY) (since He,-
--g(HX, HY) (by (4)),

which, together with (23), implies H=0 and hence the hypersurfaee is
totally geodesic thereby it is a hyperplane.
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