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A group can be characterized as a multiplicative system with

an operator 6 satisfying the following three conditions:
I (ab)e=a(bc),
I (a’a)b="b,
IIr a’a=0.
Now let us consider about a multiplicative system G with an opera-
tor 6 satisfying I, II and
III (ab)’=b".

We shall call this a G-system. Then a group is a G-system satisfy-
ing a=a® for any element a¢. In this note we shall prove that a
G-system is a product of a group and a subsystem consisting of all
idempotents.

We shall firstly prove some properties about the operator 6.

1. a*=da’.

Proof. From Il we obtain a’ab=>b. Multiplying the both sides
by o from the left, we have ab=a"d by II and b°a¢*°=56°" by III.
Multiplying the both sides by 5* from the left, we have a**°=a°.

2. er=vz and ¢=¢ for e=a"a’.

Proof. ex=(a")’a’z=z, &=(a"a’)’"=0"a"""=a"a’=e.

3. aa’=b"0".

Proof. b°=(eb)°=0b%"=0"¢, hence b0’ =b"b’e=—e.

4. a’a”®=a"a’.

Proof. Putting b=a" in 8 we obtain a*a®=a**a"=a’a™.

5. ze=a".

Proof. If we put y=xe¢, then z°re=2’y and e=xz°y. Therefore
y: xeexey:xeee: xeuwexee — wee.

6. e=aa’.

Proof. ae=a by 5. Multiplying the both sides by a° from the
right, we have aea’=aa’=¢. On the other hand, aea’=a(ea’)=ada’.

Since 6 is an anti-endomorphism of G and the condition III’
holds in G® by 8, G° is a group. Let {C(a)} be the set of classes
C(a) of G induced by the anti-endomorphisms 6, where C(a) is the
class involving a. Then the set forms a group anti-isomorphic to
G.

Theorem 1. C(e) is a set of all idempotents in G.

Proof. II implies a’a®*=a, therefore a’a=a, a’=(a’a)’=aa"=e¢



No. 7] On a Generalization of Groups 549

for an idempotent a. If conversely a’=—e, then ea?=a by II and
a*=a by 2.

Corollary. b e C(a) if and only if a% e C(e).

Lemma 1. If feC(e), then fa=a for any element a in G.

Proof. fo=f°fa=a, since f°=e.

Lemma 2. C(a)=aC(e).

Proof. feC(e) implies (af)’=ea’=a’, therefore aC(e) C C(a).
Conversely x € C(a) implies, by Corollary of Theorem 1, the existence
of f such that a’z=yf, feC(¢). Then we have r=a*f=aef=af by
Lemma 1. Therefore C(a) " aC(e) and consequently C(a)=aC(e).

Theorem 2. G s the product G°C(e) of the group G° and the
subsystem C(e) comsisting of all tdempotents. More precisely, the
element of G can be uniquely represented as the product of elements
of G° and C(e). The product ab of elements a=zf, b=yg; x, y< G,
f, 9€Cle), is given by ab=zxyg.

Proof. Since a=a"a’a¢ and a’e is an idempotent, any element «
can be represented in the form a=xzf. If a=xf, b=yg, then ab=
xfyg=xyg by Lemma 1. Now we prove the uniqueness of the rep-
resentation. If a=xf=a'f’, then multiplying the both sides by e
from the right we have zfe=x'f'e, xre=a'e¢ by Lemma 1 and z=2’,
since z, o’ are elements in G°. Multiplying the both sides of xzf
=zf’ by 2° from the left we have f=jf’ by Lemma 1, since 2’
e C(e).

Theorem 3. The following four conditions are equivalent.

(1) There exists an element x tn G satisfying xb°=0b"f for any
i G° and any f in C(e).

(2) C(e) has only one element.

(8) a=a* for any element a in G.

(4) G 1is a group.

Proof. (1)-(2): Multiplying the both sides of xb°=0°f by b"
from the right we have an idempotent xe=0°f*. Then x is an
element in C(e), since e=(xe)’=e’¢°=2’. Therefore b°=0°f by Lem-
ma 1 and f=0"0"=e.

(2)~(8): Since C(e) has only one element, C(a) consists of only
one element ae=a" and therefore a=a".

(83)>(4): (8) implies G=G", therefore G is a group.

(4)—>1): (1) follows immediately from C(e)=e.
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