Now since C is convex, $\lambda x_n + (1-\lambda)x_m$ is in C, so that

$$||x_n-x_m||^2<rac{(
ho+arepsilon)^2}{\lambda(1-\lambda)}-rac{
ho^2}{\lambda(1-\lambda)}<rac{(2
ho+arepsilon)arepsilon}{lpha^2}.$$

Let $x_0 = \lim_{n \to \infty} x_n$, then x_0 is in C since C is closed, and it follows from the continuity of the norm that $||x_0|| = \rho$. It is an immediate consequence of Lemma 1 and the condition (*) that the element x_0 is unique.

We shall now proceed to prove the above-mentioned statement. Let x_0 be an element of E which does not belong to M; then the set $\{y-x_0 \mid y \in M\}$ is clearly convex and closed, so by Lemma 2 there is a unique element y_0 such that $||y_0-x_0|| \le ||y-x_0||$ for all $y \in M$.

It is easy to see that for all $y \in M$, we have

$$||y-y_0|| \leq ||y-x_0||.$$

In fact, if $||y-y_0||$ is greater than $||y-x_0||$ for some $y \in M$, then in virtue of Lemma 1 there exists a λ , $0 < \lambda < 1-\alpha$, such that

$$||\lambda y + (1-\lambda)y_0 - x_0|| < ||y_0 - x_0||$$

which is a contradiction since $\lambda y + (1-\lambda)y_0$ is in M.

Now we define $I^*(x) = I(y) + \lambda y_0 = y + \lambda y_0$ for any $x = y + \lambda x_0$, $y \in M$, $\lambda \in R$.

Then it is clear that I^* is linear and an extension of I to $M+Rx_0$, and hence it remains only to prove the continuity of I^* and that the norm is 1. For that matter the relation

$$||y + \lambda y_0|| = |\lambda| \cdot ||\lambda^{-1}y + y_0||$$

holds for $\lambda \neq 0$.

On the other hand, $||\lambda^{-1}y+y_0|| \leq ||-\lambda^{-1}y-x_0||$, and so $||y+\lambda y_0|| \leq ||y+\lambda x_0||$,

which guarantees the continuity of I^* and shows the norm is 1. Thus we have reached the desired conclusion.

Additions and Corrections to Shouro Kasahara: "A Note on f-completeness"

(Proc. Japan Acad., 30, No. 7, 572-575 (1954))

Pages 572-573, delete "Proposition 2".

Page 574, delete "Proposition 6".

Page 574, line 19 from foot, for "mapping of W, we have $p(I^*(x)) \leq p(x)$ for any $p \in (p_a)$ and $x \in E$." read "mapping of W, concerning to $p \in (p_a)$, we have $p^*(I(x)) \leq p(x)$ for any $x \in E$."

Page 574, lines 26-29, delete "Now, since $\cdot \cdot \cdot$ inequality (*) for u^* ."

Pape 574, line 10 from foot, for "for any $p \in (p_{\alpha})$ there is" read "there exist a $p \in (p_{\alpha})$ and".

Page 574, line 2 from foot, for "same a" read "same p and a".