60 [Vol. 31,

Some Remarks on Abhomotopy Groups

By Yoshiro INOUE (Comm. by K. Kunugi, M.J.A., Feb. 18, 1955)

- 1. Introduction. Abhomotopy groups has been introduced by S. T. Hu as a generalization of Abe groups (S. T. Hu [5]). Our purpose of the present paper is to show that abhomotopy groups can be treated as a special case of homotopy groups of pseudo fibre spaces. In the preceding paper [7], I defined abhomotopy groups of relative case. In latter part of this paper, I shall show that this groups is treated by the same method as above.
- 2. Pseudo Fibre Spaces. By a pseudo fibre space (X, p, B), we understand a collection of two spaces X, B and a continuous mapping $p: X \rightarrow B$ of X onto B which satisfy the "Lifting homotopy theorem" (p. 63, P. J. Hilton [3]; p. 443, J. P. Serre [8]). In this paper, we shall use the "Proposition 1" in p. 443 of J. P. Serre [8], which is equivalent to the "Lifting homotopy theorem". We recall that the homotopy sequence of a pseudo fibre space (X, p, B):
- $(1) \longrightarrow \pi_{n+1}(B,b_0) \xrightarrow{d_{n+1}} \pi_n(X_0,x_0) \xrightarrow{i_n} \pi_n(X,x_0) \xrightarrow{p_n} \pi_n(B,b_0) \longrightarrow \cdots,$ $n \ge 1$, is exact, where b_0 is a point of B, and x_0 is a point of the fibre $X_0 = p^{-1}(b_0)$ over b_0 . In the sequel, we shall use these notations in these senses.
- 3. T-Operators. In the remainder of this paper, we assume that the total space X of a pseudo fibre space (X, p, B) is arcwise connected. J. P. Serre has proved in his paper [8] that $\pi_1(B)$ operate on the homology groups of the fibre X_0 . By the same method, $\pi_1(X)$ operate on the homotopy groups of X_0 . First, we prove the following theorem.

Theorem 1. Let (X, p, B) be a pseudo fibre space, x be a point of X and X_x be the fibre over $p(x) \in B$. Then, the collection of the n-th homotopy groups $\{\pi_n(X_x, x) \mid x \in X\}$ form a local system of groups in the space X. (For the definition of a local system of groups, refer to §13; S. T. Hu [6].)

(Proof) Let $\sigma: I \rightarrow X$ be a path joining two points x_0 and x_1 . Let $f: I^n \to X$ be a map of an element α of $\pi_n(X_x, x_1)$. Define a map

$$F \colon I^n imes 0 \smile \dot{I}^n imes I
ightarrow X$$
 by taking for each $x^n \in I^n$, $t \in I$
$$F(x^n, t) = \begin{cases} f(x^n) & \text{on } I^n imes 0 \\ w(1-t) & \text{on } \dot{I}^n imes I. \end{cases}$$

Then the map $G=pF: I^n \times 0 \cup I^n \times I \rightarrow B$ has the extention $G': I^n \times I$ $\rightarrow B$ defined by $G'(x^n, t) = p\omega(1-t)$. By the "Proposition 1" in p. 443 of J. P. Serre [8], F has an extention $F': I^n \times I \to X$ such that pF' = G'. The map $f' = F' \mid I^n \times 1 : I^n \to X$ is a representative of an element α' of $\pi_n(X_{x_0}, x_0)$. By making correspondence α to $\alpha' = \sigma_n^{**}(\alpha)$, we have an isomorphism $\sigma_n^{**}: \pi_n(X_{x_1}, x_1) \approx \pi_n(X_{x_0}, x_0)$. The detailed proof is similar as that of Theorem 13.6; S. T. Hu [6], and is omitted.

By this theorem, the fundamental group $\pi_1(X)$ acts as a group of left operator on the group $\pi_n(X_0)$, $n \ge 1$. Denote by ξ_n^{**} this operator on the group $\pi_n(X_0)$ induced by $\xi \in \pi_1(X)$, and we shall call the operator ξ_n^{**} a T-operator induced by ξ . The group $\pi_1(X_0)$ operates on the group $\pi_n(X_0)$ in the sense of S. Eilenberg. We shall call this usual operator ξ_n^{**} on the group $\pi_n(X_0)$ induced by $\xi \in \pi_1(X_0)$ an E-operator induced by ξ . Then, for $\xi \in \pi_1(X_0)$ and $\alpha \in \pi_n(X_0)$, $(i_1\xi)_n^{**} \alpha = \xi_n^{**} \alpha$.

4. Direct Sum Decomposition Theorem. In this section, we assume that the pseudo fibre space has a cross section $\psi: B \to X$. For any integer $n \ge 1$, the *n*-th homotopy group $\pi_n(X)$ contains two subgroups M_n and N_n such that i_n maps $\pi_n(X_0)$ isomorphically onto M_n , p_n maps N_n isomorphically onto $\pi_n(B)$ and each element of $\pi_n(X)$ is uniquely representable as the product of an element of M_n and an element of N_n . For $n \ge 2$, we have the direct sum decomposition:

(2) $\pi_n(X) = M_n + N_n \approx \pi_n(X_0) + \pi_n(B)$

(for example, see Theorem 27.6; S. T. Hu [6]). We recall that the cross section ψ induces an isomorphism $\psi_n \colon \pi_n(B) \to N_n$ such that $p_n \psi_n$ is the identity. Now, if all T-operators ξ_n^{**} on $\pi_n(X_0)$ for $\xi \in N_1$ are trivial, the pseudo fibre space (X, p, B) is said to be n-cross simple with respect to the cross section ψ . Then, by recalling that $\xi_1^{**} \alpha = \xi(i_1 \alpha) \xi^{-1}$ for $\alpha \in \pi_1(X_0)$ and $\xi \in N_1$, we have the following theorem.

Theorem 2. The group $\pi_1(X)$ decomposes into the direct product of two subgroups M_1 and N_1 , if and only if (X, p, B) is 1-cross simple with respect to the cross section ψ .

Theorem 3. $\pi_n(X, \psi(B)) \approx \pi_n(X_0), n \geq 2.$

The natural isomorphism $k_n: \pi_n(X, \psi(B)) \to \pi_n(X_0)$ is defined as follows: Let $f: (I^n, \dot{I}^n, J^{n-1}) \to (X, \psi(B), x_0)$ be a map of α of $\pi_n(X, \psi(B))$. Define a map $F: (I^n \times 0, \dot{I}^n \times I, J^{n-1} \times I) \to (X, \psi(B), x_0)$ by taking for each $x^n = (x_1, \ldots, x_n) \in I^n$, $t \in I$

$$F(x^n,\,t)\!=\!\!egin{cases} f(x^n) & ext{for } t\!=\!0 \ \psi pf(x_1,\ldots,\,x_{n-1},\,t) & ext{for } 0\!\leq\!t\!\leq\!1,\,\,x^n\in\dot{I}^n. \end{cases}$$

The map pF=G is extended to the map $G': I^n \times I \to B$ defined by $G'(x^n, t) = pf(x_1, \ldots, x_{n-1}, (1-t)x_n+t), x^n \in I^n, t \in I$.

By "Proposition 1" in p. 443 of J. P. Serre [8], the map F extended to the map $F': I^n \times I \to X$ such that pF' = G'. Then, the partial map

 $F'|I^n \times 1$ represents an element $\beta \in \pi_n(X_0)$ and $\beta = \kappa_n \alpha$. From this isomorphism, it is easy to prove the following theorem.

Theorem 4. The total space X is n-simple relative to $\psi(B)$, $n \ge 2$, if and only if the pseudo fibre space (X, p, B) is n-cross simple with respect to the cross section ψ .

5. Abhomotopy Groups. Let Y be an arcwise connected space. Denote by Y^{s^l} the function space of compact open topology consisting of all maps $f \colon S^l \to Y$ of l-sphere S^l into Y, where $l \ge 1$ is any integer. Denote by Y^{s^l} the arcwise connected component of Y^{s^l} containing the constant map $k_{v_0} \colon S^l \to y_0$, a reference point of Y. Define a continuous mapping $p \colon Y_0^{s^l} \to Y$ of $Y_0^{s^l}$ onto Y by

$$pf = y$$
 when $f(s^i) = y$, $f \in S^i$,

where $s^i = (1, 0, ..., 0) \in S^i$. Then, the triple $(Y_0^{s^i}, p, Y)$ is a pseudo fibre space. (Refer to the proof of the "Proposition", p. 479; J.P. Serre [8].) Furthermore, the pseudo fibre space $(Y_0^{s^i}, p, Y)$ has a cross section $\psi \colon Y \to Y_0^{s^i}$ defined by

$$\psi(y)=k_y: S^i \rightarrow y \in Y$$
,

which is called by us the natural cross section. Then the arguments in the preceding section are applicable. The fibre over a point $y_0 \in Y$ is the arcwise connected component Y_0^{sl} $\{s^l, y_0\}$ of $Y^{sl}\{s^l, y_0\}$ containing k_{y_0} , where Y^{sl} $\{s^l, y_0\}$ is a function space of compact open topology consisting of all maps $f: (S^l, s^l) \to (Y, y_0)$. It is well known that $\pi_{m+l}(Y) \approx \pi_m(Y_0^{sl}\{s^l, y_0\})$. Denote by ϕ_{m+l} its natural isomorphism. $\pi_m(Y_0^{sl})$ is the abhomotopy group $k_{m-1}^{m+l}(Y)$ introduced by S. T. Hu [5]. Thus, from the general arguments stated in the preceding section, we have the direct sum relation:

$$\pi_m(Y_0^{sl}) \approx \pi_{m+l}(Y) + \pi_m(Y)$$
 $m \ge 2$

of the abhomotopy group $\kappa_{m-1}^{m+l}(Y)$. For the proof of "Abe's Theorem", we shall prove the following lemma.

Lemma 5. Let ξ and α be elements of $\pi_1(Y)$ and $\pi_{m+1}(Y)$ respectively. Then,

$$(\psi_1 \xi)_m^* \phi_{m+l}(\alpha) = \phi_{m+l}(\xi_{m+l}^* \alpha),$$

where ξ_{m+l}^* is the E-operator of $\pi_{m+l}(Y)$ induced by ξ , and $(\psi_1 \xi)^{**}$ is the T-operator of $\pi_m(Y_0^{S^l}\{s^l, y_0\})$ induced by $\psi_1 \xi$.

(Proof) Let $f: (S^m, s^m) \rightarrow (Y_0^{sl}, k_{y_0})$ and $\omega: (I, \dot{I}) \rightarrow (Y, y_0)$ be representatives of $\phi_{m+l} \alpha$ and ξ respectively. Define a map $F: S^m \times 0 \smile s^m \times I \rightarrow Y_0^{sl}$ by taking for each $x^m \in S^m$, $t \in I$

$$F(x^m, t) = \begin{cases} f(x^m) & \text{on } S^m \times 0 \\ \psi_{\omega}(1-t) & \text{on } s^m \times I. \end{cases}$$

The map F has an extention $F': S^m \times I \to Y_0^{st}$. Then, the partial map $f' = F' \mid S^m \times 1$ represents the element $(\psi_1 \xi)_m^{**} \phi_{m+i}(\alpha)$. The

partial map $g' = G' \mid S^m \times S^i \times 1$ of the map $G' : S^m \times S^i \times I \to Y$ defined by $G'(x^m, x^i, t) = F'(x^m, t)(x^i)$ is a map of the element $\xi_{m+i}^* \alpha$. This completes the proof.

Theorem 6. (Abe's Theorem; M. Abe [1]) The Abe group $\pi_1(Y_0^{st})$, $l \ge 1$, decomposes into the direct product:

$$\pi_1(Y_0^{sl}) = i_1 \phi_{1+l} \pi_{1+l}(Y) \times \psi_1 \pi_1(Y),$$

if and only if Y is (1+l)-simple.

The following theorem follows from Theorem 4 and the above lemma.

Theorem 7. The pseudo fibre (Y_0^{sl}, p, Y) is m-cross simple with respect to the natural cross section ψ , if and only if Y is (m+l)-simple. Then, the space Y_0^{sl} is m-simple relative to $\psi(\gamma)$ if and only if Y is (m+l)-simple.

6. Abhomotopy Groups in Relative Case. Let Y_1 be an arcwise connected subspace of Y. Let $Y^{\mathbb{E}^l}\{S^{l-1}, Y_1\}$, $l \ge 1$, be a function space of compact open topology consisting of all maps $f: (E^l, S^{l-1}) \to (Y, Y_1)$ of l-element E^l into Y such that $f(S^{l-1}) \subseteq Y_1$. Denote by $Y_0^{\mathbb{E}^l}\{S^{l-1}, Y_1\}$ the arcwise connected component of $Y^{\mathbb{E}^l}\{S^{l-1}, Y_1\}$ containing the constant map $k_{y_0}: E^l \to y_0 \in Y_1$. Define a continuous map $p: Y_0^{\mathbb{E}^l}\{S^{l-1}, Y_1\} \to Y_1$ by

$$pf = y$$
 when $f(s^{i-1}) = y$, $f \in Y^{E^i} \{S^{i-1}, Y_1\}$.

Then, the triple $(Y_0^{E^l}\{S^{l-1}, Y_1\}, p, Y_1)$ is a pseudo fibre space and has the natural cross section $\psi \colon Y_1 \to Y_0^{E^l}\{S^{l-1}, Y_1\}$ defined by

$$\psi(y) = k_y : E^i \rightarrow y \in Y_1.$$

The fibre over a point $y_0 \in Y_1$ is the arcwise connected component $Y_0^{E^l}\{S^{l-1}, s^{l-1}; Y_1, y_0\}$ of $Y^{E^l}\{S^{l-1}, s^{l-1}; Y_1, y_0\}$ containing the map k_{y_0} , where $Y^{E^l}\{S^{l-1}, s^{l-1}; Y_1, y_0\}$ is a function space of compact open topology consisting of all maps $f: (E^l, S^{l-1}, s^{l-1}) \to (Y, Y_1, y_0)$. It is well known that $\pi_{m+l}(Y, Y_1) \approx \pi_m(Y_0^{E^l}\{S^{l-1}, s^{l-1}; Y_1, y_0\})$. Denote by ϕ_{m+l} its isomorphism. Thus, by the same arguments as in the section 5, we have the direct sum relation:

 $\pi_m(Y_0^{E^l}\{S^{l-1}, Y_1\}) \approx \pi_{m+l}(Y, Y_1) + \pi_m(Y_1), \ m \ge 2 \ (Y. \text{ Inoue } [7]),$ and for $\xi \in \pi_1(Y_1)$ and $\alpha \in \pi_{m+l}(Y, Y_1)$,

$$(\psi_1 \, \xi)_m^{**} \phi_{m+l}(\alpha) = \phi_{m+l}(\xi_{m+l}^* \alpha),$$

where ξ_{m+l}^* is the usual operator of $\pi_{m-l}(Y, Y_1)$ induced by ξ . From this relation, we have the following "Abe's Theorem" in relative case.

Theorem 8. (H. Uehara [9]) The group $\pi_1(Y_0^{E^l}\{S^{l-1}, Y_1\})$, $l \ge 1$, decomposes into the direct product:

$$\pi_{\scriptscriptstyle 1}(Y_{\scriptscriptstyle 0}^{\scriptscriptstyle El}\{S^{\scriptscriptstyle l-1},\;Y_{\scriptscriptstyle 1}\})\!=\!i_{\scriptscriptstyle 1}\phi_{\scriptscriptstyle 1+l}\pi_{\scriptscriptstyle 1+l}(Y,\;Y_{\scriptscriptstyle 1})\!\times\!\psi_{\scriptscriptstyle 1}\pi_{\scriptscriptstyle 1}(Y_{\scriptscriptstyle 1}),$$

if and only if Y is (l+1)-simple relative to Y_1 .

7. An Application. For an application of the above results, we shall give a counter example of the "Theorem (4.1)" of S. T. Hu [4]. Let Y be an arcwise connected space. The r-th torus function space $\mathfrak{T}(Y)$, $r \geq 0$, is a function space of compact open topology consisting of all maps $f: I^r \to Y$ characterized by

$$f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_r) = f(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_r)$$

 $i=1, 2, \ldots, r,$

where $x^r = (x_1, \ldots, x_r) \in I^r(R. H. Fox [2])$. Let $\mathfrak{T}_0^r(Y)$ is an arcwise connected component of $\mathfrak{T}^r(Y)$ containing a constant map k_{y_0} : $I^r \to y_0 \in Y$. $\mathfrak{T}_0^s(Y)$ is homeomorphic to Y and $\mathfrak{T}_0^r(Y)$ is homeomorphic to $\mathfrak{T}_0^{r-1}(Y)^{s_1}$. Consider the function space $\mathfrak{T}_0^r(Y)^{s_0^l}$, $l \ge 1$. The fundamental group $\pi_1(\mathfrak{T}_0^r(Y)^{s_0^l})$ is isomorphically embedded in $\pi_1(\mathfrak{T}_0^{t+r}(Y))$. Then, from the algebraic structure of $\pi_1(\mathfrak{T}_0^{t+r}(Y))$ (§8, R. H. Fox [2]) and the "Abe's Theorem", we have the following theorem.

Theorem 9. The space $\mathfrak{T}_{n}^{r}(Y)$, $r\geq 0$, is (l+1)-simple, $l\geq 1$, if and only if all Whitehead products $[\alpha_{k}, \alpha_{k'}]$ of elements $\alpha_{k} \in \pi_{k+1}(Y)$ and $\alpha_{k'} \in \pi_{k'+1+l}(Y)$, such that $0 \leq k+k' \leq r$, $0 \leq k, k' \leq r$, vanish.

Then, by Theorem 7, we have the following theorem.

Theorem 10. The function space $\mathfrak{T}_0^r(Y)_0^{sm}$ is (l+1-m)-simple, $l>m\geq 1$, relative to $\mathfrak{P}_0^r(Y)$ if and only if all Whitehead products $[a_k, a_{k'}]$ of elements $a_k \in \pi_{1+k}(Y)$ and $a_{k'} \in \pi_{k'+1+l}(Y)$, such that $0\leq k+k'\leq r$, $0\leq k$, $k'\leq r$, vanish, where \mathfrak{P} is the natural cross section.

Let n be an even integer and let α be a generator of $\pi_n(S^n)$. The Whitehead product $[\alpha, \alpha]$ is a non zero element of $x_{2n-1}(S^n)$, in fact, the Hopf invariant of maps of $[\alpha, \alpha]$ is ± 2 . Thus by Theorem 9, the space $\mathfrak{T}_0(S^n)$, $r \geq 2n-3 > n \geq 4$, is not (l+1)-simple for any integer $n > l \geq 1$. Furthermore, by Theorem 10, the function space $\mathfrak{T}_0^r(S^n)_0^{sm}$, $n-1>m\geq 1$, is not (l+1-m)-simple relative to $\mathfrak{P}_0^r(S^n)$, for any integer $l>m\geq 1$. But the space $(\mathfrak{T}_0^r(S^n)_0^{sm})_0^{gn} \{S^0, s^0; \mathfrak{P}_0^r(S^n), k_{y_0}\}$ is q-simple for each integer $q\geq 1$. This fact is proved as follows: Let (X, p, B) be a pseudo fibre space with a cross section $\mathfrak{P}_0^r(S^n)$. Denote by \mathfrak{Q} the space $X_0^{g_1}\{S^0, s^0; \mathfrak{P}_0^r(S^n), x_0\}$. By Theorem 3, elements $\alpha \in \pi_m(\mathfrak{Q})$ and $\mathfrak{E} \in \pi_1(\mathfrak{Q})$ are represented by maps $f: (I^{m+1}, \dot{I}^{m+1}) \to (X, x_0)$ and $\omega: (I^2, \dot{I}^2) \to (X, x_0)$ respectively. Furthermore, we can suppose that $f(x_1, \ldots, x_m, x_{m+1}) = x_0$ for $\frac{1}{2} \leq x_{m+1} \leq 1$ and $\omega(x_1, x_2) = x_0$ for $0 \leq x_2 \leq \frac{1}{2}$. The map $F: (I^m \times I)^* \times I \to X$ defined by

$$F(x_1,\ldots,x_m,s,t)\!=\!egin{cases} f(x_1,\ldots,x_m,t) & & ext{on} & I^m\! imes\!\dot{I}\! imes\!I \ \omega(s,t) & & ext{on} & \dot{I}^m\! imes\!I\! imes\!I \end{cases}$$

is extended to the map $F': I^m \times I \times I \rightarrow X$ defined by

$$F'(x_1,\ldots,x_m,s,t) = egin{cases} f(x_1,\ldots,x_m,t) & ext{for} & 0 \leq t \leq rac{1}{2} \ \omega(s,t) & ext{for} & rac{1}{2} \leq t \leq 1. \end{cases}$$

Then, Ω is m-simple.

References

- [1] M. Abe: Über die stetigen Abbildungen der n-Sphäre in einen metrischen Raum, Jap. J. Math., 16, 169-176 (1940).
- [2] R. H. Fox: Homotopy groups and torus homotopy groups, Ann. Math., 49, 471–510 (1948).
- [3] P. J. Hilton: Homotopy Theory, Victoria University (1952).
- [4] S. T. Hu: Homotopy properties of the space of continuous paths, Portugaliae Math., 5, 219-231 (1946).
- [5] --: On spherical mapping in a metric space, Ann. Math., 48, 717-734 (1947).
- [6] —: Homotopy Theory, 1, Tulane University (1950).
- [7] Y. Inoue: On abhomotopy group in relative case, Proc. Japan Acad., 30, 841-845 (1954).
- [8] J. P. Serre: Homologie singulière des espaces fibrés, Ann. Math., **54**, 425-505 (1951).
- [9] H. Uehara: Some remarks on relative free homotopy, Jap. J. Math., 2, 247-252 (1951).