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(Comm. by Z. SUETUNA, M.J.A., May 13, 1955)

1. Let f(x) be a continuous function with period 2w. After
J. P. Nash [1], f(x) is said to be of class ¢(n) if

(n) f "f @+t) cosnt dt=0(1)

uniformly for all xz, %, a,b with b—a < 2.

If ¢(n) is not O(n), then f(x) becomes constant [1] and if
o(1/n) < 1/¢(n), then f(x) belongs to ¢(n) class; so that we assume
that

$(n)<mn, w(1/n) = 1/¢(n).

We have already proved the following theorem [2]:

Theorem 1. If f(x) ¢s of class ¢p(n) and s continuous with
modulus of continuity «(8), then there exists a positive constant C*
independent of n such that

_ 1 om)), 1
5@ —F @1 =C[ o ( )log<0n¢(n)>+0(n)],
where 6(n) is monotone increasing and 1 < 0(n) < ¢(n).

We prove here the following

Theorem 2. Let f(x) be a function not equivalent to a constant.
Let «(8) be the modulus of continuity of f(x) and »,(8) be the inte-
gral modulus of continuity of f(x).2 Then,

1 w,(1/n)
l8:@)—f(@)| = Co ( )log (Cn w(l/n)>

On the other hand, concerning uniform (C, —a) summability of
Fourier series we have proved the following theorem [3]:

Theorem 3. If f(x) s of class ¢(n) and is continuous with the
modulus of continuity «(8), then

@ —f @1 =0 o (L) (o) f/ o at,

where 0<a<l,s;%(x) s the n-th Cesdro mean of the Fourier series
of f(x) of order —a.

From this theorem we get

1) C is always used to denote a constant independent of n, which is different in
different occurrences.

2) wd) = Max ST f @) —f@) | da.
1]
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Theorem 4. Let f(x) be a function not equivalent to a constant,
(8) be the modulus of continwity of f(x) and «,8) the integral
modulus of continuity of f(x). Then

o w(1/n) w(t)
o @) —F@ 1= C[ o 1)(n wa/m) f dt |,
where 0<a<1.

For the proof of these theorems we use the following theorem
due to E. Hille and G. Klein [4]:®

Theorem 1. Unless f(t) is equivalent to a constant function,

my(h) = Koy(h),

h
where m‘(h):oﬁi f |f@+t)|dt and K is a constant independent
0

of h.

2. We prove the following

Lemma. If f(x) ¢s integrable, then f(x) belongs to the class
1/w(1/n).

Proof. It is sufficient to prove that

/ *F (@) sin nt dt=0(ew,(1/n))
uniformly for all x,n,a,b with b—a < 27w. We have
fbf(a;+t) sin nt di= —fb+ﬂ/nf(x+ t—r/n)sinnt dt

a+m/n

:%[[ammf(x+t) sin nt dt+[b[f(x+t)—f(x+t_w/n)] sin nt dt

— fb+“/nf(x+ t—ar/n) sinnt dt} s
hence by Theorem I ’
] f Fl@+t)sinnt dt| <c [ml(l/n)+ w,(1/n)] < Coy(1/n).

Thus the lemma is proved.

By the lemma and the remark stated at the beginning of [1],
w(l/n)/w,(1/n) < Cn except trivial case, and then nw,(1/n)/w(1/n) be-
comes greater than 1 for sufficiently large n.

In Theorem 1, if we take ¢(n)=1/w,(1/n), then

I'8.(2)—f (@) | = CLo(1/n)log (Cn O(n)w,(1/n))+1/6(n)].
Taking 6(n)=1/w(1/n) we get the conclusion of Theorem 2.

Theorem 4 follows from Lemma and Theorem 38, taking

p(n)=1/w(1/n).

3. As particular cases of Theorem 2 we get the following
corollaries.

Corollary 1 (Dini-Lipschitz [5]). If f(x) is continuous and

3) For a simple proof, see [8].
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w(1/n)=0(1/log n),
then the Fourier series of f(x) converges uniformly.
Corollary 2. If f(x) is continuous and
o(l/m)=o0(1/log log n), w,(1/n) =< o(1/n)(log n)/n
then the Fourier series of f(x) converges uniformly, where k is a
positive constant.

For example, if we put

Sf(t)=1/(log log 1/t)* O<t=m),
F(0)=0, fO=FfC@mr—1t) (mr<t<2m),
then the conditions of Corollary 2 are satisfied.

Corollary 3 (de la Vallée Poussin [5]). If f(x) belongs to the
class Lipa (0 <a<1), then

| (@) —f (@) | = Clog n/n°.

4. We get the following corollaries to Theorem 4.

Corollary 4 (Zygmund [6]). If f(x) ts continuous and o(1/n)
=o0(1/n*), then the Fourier series of f(x) is summable (C, —a) uni-
Jormly.

Corollary 5. If f(x) belongs to the class lip 8 and
Lip(1+8—8/a, 1), i.e.

w(l/m)=0(1/n"), w,(1/n)=C|n'*?-P
Jor 0<pB<a<l, then the Fourier series of f(x) is summable (C, —a)
uniformly.

Corollary 6 (Hardy-Littlewood [7]). If f(x) is continuous and
of bounded variation, then the Fourier series of f(x) is summable
(C, —a) untformly.

For, if f(x) is of bounded variation, it belongs to Lip (1,1) i.e.
w,(1/n)=0(1/n). By the continuity of f(2), «(1/r)=0(1), and hence
we obtain Corollary 6 from Theorem 4.

Finally the author expresses her hearty thanks to S. Tsurumi,
especially in the proof of Theorem 2 (§2), which was suggested by
him.
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