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55. On a Relation between Dimension and Metrization

By Jun-iti NAGATA
Department of Mathematics, Osaka City University
(Comm. by K. KUNUGI, M.J.A., April 12, 1956)

The purpose of the present note is to show that the dimension
of a metrizable space is defined by some characters of metrics which
agree with the topology of the space.

In this note we concern ourselves only with metrizable spaces
and take the definition of dimension by H. Lebesgue or the equiva-
lent definition: dim¢=—1, dim R<n if for any pair of a closed sub-
set F' and an open subset G with F*CG there exists an open set U
such that FCUCG, dim(U-U)<n—1.°

We state here a theorem previously proved by the author® which
will be needed in the proof of our main theorem.

In order that o T, topological space R is o metrizable space
with dim R=<mn 1t is necessary and sufficient that there exists a sequence
B >BF>B,>BF>--- of open coverings such that S(p,B,) (m=1, 2,
<+ ) 4s a nbd (=neighbourhood) basis for each point p of R and such
that each set of B,., intersects at most n+1 sets of B,.

Theorem. In order that dim R<n for a metrizable space R it
18 necessary and sufficient that one can assign a metric p(x, y) agreeing
with the topology of R such that for every €>0 and for every point
r Of R’ P(Ss/z(x)s yt)<8 (’l:———'l," ',’ﬂ+2) ’mely P(yiy ?/j)<€ fOI" some ’i)
J with 13:7.%

Proof. Necessity. 1. Let R be a metrizable space with
dim R <n, then from the above stated theorem there exists a se-
quence U, >F*>U,>U¥*>...» of open coverings of R such that
S(p, ) (m=1,2,---) is a nbd basis for each point p of R and such
that each S%*p, U%,,) intersects at most n+1 sets of U,,. Now, we
define S, m,,..m,(U) for 1=m,<m,<---<m, and for Uel, such
that S,,(U)=< {U'|S(U’, Up)~ Uz, U’ € U,,} =S*(U, U,,), Sn,,... m,(U)
= AUISU’, Un) ~Smy,-oim,_(U)F ¢, U € W, } =S¥y, .. m,_(U), 1L,,)
and Su,..w,(U)=U for p=1. Furthermore we define &, =1,

1) The equivalence of these two definitions was proved by M. Katétov: On the
dimension of non-separable spaces I, Czechoslovak Mathematical Journal, 2 (77) (1952),
and by K. Morita: Normal families and dimension theory for metric spaces, Math.
Annalen, 128 (1954), independently.

2) A theorem of dimension theory, Proc. Japan Acad., 32, No. 3 (1956).

3) Sp. B)="{V|peVeB} S, B)="{V|VeB, A~ V¢} for a subset A and
a covering B.

4) Ser(®)={ylo(x, y)<e/2}, o(Sese(x), yi)=int{o(z, ¥:)|2 € Se/(x)}.

5) Ux={S(U,N)|U =U}, Ux*=Ux)*, S*(p, M)=S(S(p, 1), ).
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Sy my= Sy m,(IIU € Uy } .

Firstly, we prove that —2%,;1—+ R 2}% = Elh—+ aee +—213
Conpyvomy>Suyyee 1L it holds p=¢ and m;=I; (i=1,---,q), then the
validity of &,,,..m,>S ..., is obvious. Next, we see easily that
generally S ... (U)SSWU,U,) for U'ell,. For Si,. .U
=85Sty (U, U YES Sy iU Uiy IES (St oty (U sy ) S
=S 88, (U), U ) S S(U, Uy,) from U, SULF* >0 SUx* >« -0 S
Hence, if 1/2™+4 ... 41/2">1/2%+.+. +1/2% and m,=1,, my=1y---,
Mmy_y=1l;_y, my<l; for a definite ¢ with 2=<i=<p, ¢, then S, .., (U)
SS(U, U, )=U” for every U ell,, and for some U” e, . If further
U’ satisfies S(U’, U,)~S,,......;,_,(U) # ¢, then it holds U"~S,,.... m;_,(U)
=U"'~8,,...; (U)=¢. Therefore S, ... (U)SU CS,,..nU0)
=S, m,(U) for every U: Sy, .., (U)«<U ell,, where we denote
by A<U ell, the relation that S(U", Il;)~A & ¢ for U ell, and shall
use this notation from now forth. Hence S ..,(U)=S,... ,_(U)
[ 18, al UM (D)< € W} 1S Sy, o (U). I my <y,
then S, ..., (UNSS(U, N, )SU"SS,,,...m(U”) for every U ell, and
for some U” ¢, . Thus we obtain &, ..,,>S, ...,

2. Now we define a non-negative valued function p(z,y) on R
x R such that p(x, y)=inf{1/2™+ ... +1/2™|y e S(z, Sppyeem) s PES Y)
=1 y¢8(,S,,, .. m,) for every m, (¢=1,---,p). Let us show that
plx, y) satisfies the axiom of metric.

Since S(p, U,,) (m=1,2,---) is a nbd basis or p, p(x, y) obviously
agrees with the topology of R, i.e. S.(x)={ylp(x,y)<e} (¢>0) is a
nbd basis of each point p of R.

To prove the triangle axiom: p(z,y)+p(y, 2)=p(x, 2), we assume
that p(x, y)=a=b=p(y,2). For an arbitrary ¢>0 we can take m,,

<oy, My, Uy, -+, 1, such that 1<m,< - <m, 1<l<---<l,, a+e>
12"+ +1/2m>aq, b+e>1/24+ ... +1/24>b and such that 1/2™ +
coe+1/2">1/20+ o« +1/2. Since y € S(x, S, m,), 2€8WY, S,y 0,)
are obvious from the definition of p(z, ), we assume z, y ¢ Sing. - m,{U)s
Uell,; y,2¢8,,..,(V), Vell,. We notice that we can assume p,
9=2, m,>1, without loss of generality.

i) Let us consider firstly the case of m,=I[,. Since, as is
firstly proved, S,,,...,(U)SS(U, U,,) and S,,... (VIS S(V, U,)=8(V,
W), z,z¢S(U,U,)~S(V,U,) =W for some Well,_, from U<
U, ;. Hence ze¢S(z, &,,_,), and hence p(z,2)=1/2""'<1/2™+-..
+1/2"41/2%4 .. +1/2=q +b— 2¢.

iil) To consider the case of m,;<!,, we notice that there exist
U (¢t=1,---,p), V;(§=1,---,q) such that U, e U,,, V;ell,, y € U,~V,,
U=U«Uy<---<U, V=V« V,«---<V, and such thatzeS,, ... ,,,(Uy),
z€S,,.. . (V). We take 1=1 such that m,<l, <m,,.

implies
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a) In the case that /,<m,,, we can take S,, S; e I;*, such that
Yy S-S Si~UF¢, So~Vx¢ from the fact that [,+1=<m,,,
l,+1=<l,. For from U, ell, <W. we get yeS,  ..m(Uis)
S SWisy umi+1)§S(Ut+17 U, )= S, for some S, ell¥,; and from V,
ell, <y, we get yeS, .. . (V)& S(Vy, U,) =S, for some S,eUf.,.
Then S, ~U;¥¢ and S, ~V,==¢ are obvious from the fact U,«U,,,,
Vi<V, Since S;~S:7¢ and U¥¥ <1, , it holds S;~S, = W for some
Well,. Hence S(V,W,)~U;F¢, te U-<Vell. Hence
2€8y,..1,U) S Sy, ompty, - 1(UD).  Since @ € S(U's41y Wy,,,) E(UD° for
some Uiy, el,,, Uiell,, it holds v ¢ S'd=(U;)’ for some S'ell;.
Therefore S,,....m,.1,,1(Us) 2,2, and hence zeS(®, S, ..mptyho1)-
Thus we get p(z, y)<1/2™+ -« +1/2M 41 /214 o £ 1/20 KT /2M A - -
+1/2"+1/2+ .- +1/29=a+b+ 2,

b) If m,,.,=I,, then we take k£ such that 0<k=<i; m,,,—1=m,,
My—1=m_y, <+, My_poo—1=M_pp1, My_po;—1>m,;_;, where k=0 for
My, —1>my, and k=< for m;,,—1=m; (j=1,2,--+,7). In the case
of k<t, from S(U,_giy, Uny_p)~Ui-xF ¢ and y € S(Uiiprs, Wny_yy)
~S(V, )+ we get Well, ., . such that W-U,_,*¢, W
28(Vy,1,)22. Therefore 2¢€.S,, . ..m_gm_pe—1(U). With respect
to x, since %€ S(U'i-re1 Umy_py,) D= (S, myi{Up) for some U';_y.,
el,,_,,, there exists Well,, . _, such that xe WE(S,,,....m.(UD)"-
HencexeS,, ... m_pmi—pe-1(Us). Thus we get 2eS(, Sp,,... oy poms g5, -1)»
and hence p(x,2)<<1/2™+ ... 4 1/2M-k4 1 [2Mi=k+17 1 =] /2™ 4 o oo ] /2041
+1/28 < a+b+ 2.

In the case of i=Fk, we get W e U, _, such that x ¢ W2S(V,, I,).
Hence z¢S(w, S,,,), and consequently p(x,2)<1/2™ '=1/2"+ ...
+1/2m+141/28 <a+b+2¢. Thus we get p,2)<a+b+2¢ for every
€>0 in any case, and hence it must be p(x, 2)<a+b=p(x,y)+p¥,?).

3. Now, it remains to prove that p(S..(®), ¥.)<e (1=1,--+,n4+2)
imply p(y;, y;)<e for some 4, 7 with i==j. Since p(S..(x), ¥;)<e, we
can choose n+2 points x; and a positive number & such that p(zx,z;)
<8<¢ef2, p(x;,y;)<e. Then there exist my, ---,m, and S, ¢ 6ml,...,mp
(¢=1, +++,n+2) such that z;,y, €S;, 26<1/2™+ ---+1/2™<e. Since
S<1/2Mm* 4 oo +1/2™%1 ) it must be x, € S(z, Sy, myrr) @=1, -+
n+2). Let Si-——sz,.‘,mp(Ui), U,el,, then there exist S,/ el
(<U¥ .y such that S/ ~U,%¢, S/32,. Hence S/~S,Us.)F¢
(=1, -++,n+2) from Spys1,ermyr1 <Ui 1, and hence S*(w, U 1) ~U;=¢
(¢=1, --+,n+2). Since from the first assumption S*(x, U +,) inter-
sects at most n+1 sets of Hml, it must be U,=U; for some 1%, j
with ¢==7. Then y; e S(¥;, S,,, ...m,), and hence we conclude p(y;, ¥;)
120+ .- +1/2™ <,

Sufficiency. We denote by p(z,y) a metric satisfying the con-
dition of this theorem. Then we denote by M, a maximal subset of

2
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R such that #, y ¢ M, and %=y imply p(z, ¥) =1/2. From the maximal
property of M,, &,/={S,.(®)lx ¢ M,} is obviously an open covering of
R. From the properties of p(x,y) and of M, it is also obvious that
Sy2() intersects at most n+1 sets of & for every point & of R.
Put S,={~{Sys()ly € S, .(®)} |y € M}, then every S,(x) intersects
at most n+1 sets of &,. If we put U.={S.(x)|lxec R}, then Ujs
<Uyp<S <oyt

Next we denote by M, a maximal subset of E such that xz,y € M,
and ¢ &y imply p(x,y)=1/2°. &= (S, s(x)lx € M,} covers R, and S, ()
intersects at most n+1 sets of &, in the same way. Hence every
S, s(x) intersects at most n+1 sets of S,= [~ {S,2W)ly € Sy ()} |
e M,}. Furthermore it holds obviously Ufsn0<<ll <@ <l g, q/8< Uy
<Ufs<@S,. By repeating such processes we get a sequence &,>&;
>8,>68}>... of open coverings of R such that every set of &,,,
intersects at most n +1 sets of &, and such that S,, <11, pi+m-15, ;g3 +m-135
(m=1,2, ---). Hence we conclude dim R <n from the firstly stated
theorem by the author.

As is easily seen from the proof of this theorem, we can state
this theorem in the following form.

Corollary 1. In order that dim R<n for a metrizable space R t
18 necessary ond sufficient that one can assign a metric p(x,y) agree-
ing with the topology of R such that for every €>0 and for some
P(€)>0, p(Sue®), ¥:)) <& (i=1, -+, n+2) mply p(y,, y,) <€ for some
%, J with t3x7.

We can deduce the following proposition proved by J. de Groot®
from our theorem for the special case of n=0.

Corollary 2. A metrizable space R is 0-dimensional if and only
if one can assign a metric which satisfies p(x, z)< max[p(z,y), p(¥,2)].

Proof. Let dim R=0, then from our theorem we can agssign a
metric p(w,y) such that p(S..®),y.)<e (¢1=1,2) imply p(y,, ¥s)<e.
Hence if we assume p(z, 2) =¢ >max[ p(®, %), p(¥, 2)] for some x,y,z ¢ R,
then p(S. (%), ®)<e, p(S..(¥),2)<e and p(x,z)=¢, which contradict the
character of p(x,y). Therefore it must be p(x, 2) <max[p(x,y), p(y, 2)].

Conversely, let p(x, y) be a metric such that p(z, 2)<max[p(z,y),
p(y, 2)], and let us assume that p(S, (), ¥;)<e (¢=1,2) Then there
exist 2,2, € S;s(x) such that p(z, y,)<e (¢=1,2). Since p(x,, x,)<¢,
we get P(yls y2)§maxtp(y1’ 1171), P(wly yz)]émaX[P(wv yl)s P(wv x2)’ P(%r y2)]
<e.

6) Non Archimedean metrics in topology (1954), to be published. See J. de Groot
and H. de Vries: A note on non-Archimedean metrizations, Proceedings Koninkl.
Nederl. Akademie van Wetenschappen, Series A, 58, No. 2 (1955).



