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On a Relation between Dimension and Metrization

By Jun-iti NAGATA
Department of Mathematics, Osaka City University

(Comm. by K. KrNUGI, M.Z.A., Aoril 1.2, 1956)

The purpose of the present note is to show that the dimension
of a metrizable space is defined by some characters of metrics which
agree with the topology of the space.

In this note we concern ourselves only with metrizable spaces
and take the definition of dimension by H. Lebesgue or the equiva-
len definition: dime---I, dirnRn if for any pair of a closed sub-
set F and an open subset G with F_G there exists an open set U
such that F_ UG, dim(U- U) n- 1. )

We state here a *heorem previously proved by the author2) which
will be needed in the proof of our main theorem.

In order that a T1 topological space R is a metrizable space
with dimRn it is necessary and sufficient that there exists a sequence
3" 93.3" ... of open coverings such that S(p, 93) (m-l, 2,
..) is a nbd (--neighbourhood) basis for each point p of R and such

,that each set of 93/ intersects at most n + 1 sets of .
Theorem. In order that dimRn for a metrizable space R it

is necessary and sufficient that one can assign a metric (x, y) agreeing
with the topology of R such that for every :>0 and for every point
x of R, (Sn(x), y)< (i- 1,..., n + 2) imply (y, y)< for some i,
j with ij.

Proof. Necessity. 1. Let R be a metrizable space with
dim R__<=n, then from the above sated theorem there exists a se-
quence tt:>lI**-lI:tI**:> ...) o open coverings of R such that
S(p, ,) (m-l, 2,...) is a nbd basis for each point p of R and such
that each SZ(p, it+,) intersects at most n+ 1 sets of lt. Now, we
define S,m,...,(U for lm<m<...<m, and for U elI such
that S,(U)-,-, {U’IS(U’, t.)U, U’ e tt.}-Sz(U, tt,,), S.,...,,(U)
= [u’ls(u’, tt)z,...,_(u)4:, u’ tt.} =s(s,...,_(u),
and Sm,...,,(U)=U for p=l. Furthermore we define

1) The equivalence of these two definitions was proved by M. Kattov- On the
dimension of non-separable spaces I, Czechoslovak Mathematical Journal, 2 (77) (1952),
and by K. Morita: Normal families and dimension theory for metric spaces, Math.
Annalen, 125 (I954), independently.

2) A theorem of dimension theory, Prec. Japan Acad., 32, No. 3 (1956).
3) S(p,)=[VIpeV}, S(A,)=-{VIVe, A-V4:} (era subset A and

a covering .
4) S/2(x)={yl(x, y)<e/2}, p(Se/2(x), y0=inf{(z, y)lz eS/2(x)}.
5) u,=is(u,u)luu}, u**=(u.)., S(p, u)=z(S(p, u),u).
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Firstly, we prove that 1 +,.. +.,. 1 > 1___ + +_1 implies
2 2,-- 2 2

(R),...,:>(R),..... If it holds pq and m-l (i=l,...,q), then the
validity of ,,...,>,..., is obvious. Next, we see easily that
generally S,...(U’) S(U’, ) for U’ e U. For S,...,,(U’)

V .,’" .,’"

S(S(U’), tt) S(U’, ) from >tt * >U> * >... >U*.
Hence, if 1/2,+ +1/2,>1/2+.,. +l/2q and m-l, m--l,...,
m_=l_, m<l for a definige i with 2ip, q, hen S+,...,(U’)
S(U’, H)U" for every U’ e lt and for some U"e H. If further
U’ satisfies S(U’, II)S,...,,:_(U), then it holds U"S,...,_(U)
U"S,...,_(U). Therefore S+,...,q(U’) U" S,...,(U)

S,...,,(U) for every U’: St,...,_(U)U’ e ti, where we denote
by AU’ e H the relation that S(U’, 1[)A for U’ e lI and shall
use this notation from now forth. Hence S,...,(U)-S,...,_(U)

then S ..,(U’)S(U’, H) r,, (U" U’U S for every e lt and,pk

for some U"e tt. Thus we obtain ,...,>,...,.
2. Now we define a non-negative valued function p(z, y) on R

x R such that p(x, y)-inf{1/2 +... + 1/2ly e S(x, ,...,,)}, p(x, y)
=1 y S(x, ,...,,) for every m (i=1,,.., p). Let us show that
p(x, y) satisfies the axiom of metric.

Since S(p, tI) (m-l, 2,...) is a nbfl bass oz p, p(x, y) obviously
agrees with the topology of R, i.e. S(x)-{ylp(x, y)<e} (>0) is a
nbd basis of each point p of R.

To prove he triangle axiom: p(z, y)+p(y,z)p(z,z), we assume
that p(x, y)-ab-p(y, z). For an arbitrary s>0 we can take m,
.., m,, l, ...,l such that 1Gm<...<m,, lGl<...<l,
1/2+ +l/2>a, b+e>l/2+ +l/2>b and such that 1/2+

+1/2>t/2+ +1/2. Since y S(x, ...,,), z S(y, ,...,)
are obvious from the definition of p(x, y), we assume x, y S,...,(U),
U e tt; y, z e S,....,,(y), v e tt,. We notice that we can assume
q2, m,>l without loss of generality.

i) Let us consider firstly the ease of m=l. Since, as is
firstly proved,. S,...,,(U)SG(U, tt) and
H), x, z e S(U, lt)S(V, tt) W rot some W
tt_. Hence z S(x, _), and hence p(x, z) G 1/2-G1/2+.-.
+ 1/2%+ 1/2 + + 1/2=a +b- 2s.

ii) To consider the ease of m<l, we notice that there exist
U, (i-1,..., p), V (d 1, ..., q) such that U e tt, v ett,,, y e Uv,
U=UU. U,V=VV. Vand such thatxeS,...,(U),
z e S,...,(V). We take il such that m,<lGm+.
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a) In the case hat l<m/ we can take S1, S. e lth*+l such that
y S,,..S,, S,,-,,U , SV from the fact that l + m
l.+ll. For from U+,. e<+ we get y e S,,...,(b+)
S(U+,Hm+,)S(U+,H+)S for some Se*+ and from V
e<+ we get y e S ,q(V)S(V, I)S for some S
Then S:U and SV are obvious from the fact U
VV:. Since SS: and l[$<t, it holdsSSW for some
W e lI. Hence S(V, lI)U , i.e. U V e . Hence
z e S,...,(U)S,...,,,...,q(U). Since x e S(U’+I, lt+) (U) for
some U’+. e +, U e iI, it holds x e S’ (U) for some S’
Therefore S,...,,,...,(U) x, z, and hence z e S(x, m,...,,,...,).
Thus we get p(x, y) 1/2" +..- + 1/2TM + 1/2 +... + 1/2q 1/2, +.-.
+ 1/2,+ 1/2 + + 1/2q= a +b+

b) If m+=l, then we take k such that Oki; m,+-l-m.,
m-l-m_, ..., m_+:-l=m_+, m_+-lm_, where k-0 for
m,+-lm, and k=i for m+-l=m (j=l, 2, ...,i). In the case
of k<i, from S(U_+,II_+)U_ and
S(V,) we get We lt_+_ such tha WU_, W
S(V, 1) z. Therefore z e S,...,,_,_+_(U). With respec

to x, since x eS(U’_+,II_+)(S,...,_(U)) for some U’_+
e lI_+, there exists W’ e t_+_ such that x e W’(S,...,+(U)).
Hence x e S,...,,_,_+_I(U). Thus we get z e S(x, ,,...,-,m--+ -),
and hence p(x, z)l/2’+ + 1/2-+ 1/2-+’-=1/2, +... + 1/2+

+ 1/2 a +b+ 2e.
In the case of i=k, we get W e l[_ such hat x e WS(V,

Hence z e S(x, _), and consequently p(x, z).1/2-=1/2+
+l/2++1/2a+b+2e. Thus we get g(x,z)a+b+2e for every
e>0 in any case, and hence it mus be g(x,z)a+b-p(x,y)+(y,z).

3. Now, it remains to prove that (S/(x),y)<e (i-1,...,n+2)
imply p(y, y)<e for some i, ] with ij. Since p(S/(x),y)<e, we
can choose n+ 2 points x, and a positive number such hat (x,x)
<<e/2, p(x, y)<e. Then there exis m, ..., m and S e ,...,,
(i-l, ...,n+2) suc that x,y e S, 2<1/2+... +l/2,<e. Since
<1/2++...+1/2%,+, it mus be x e S(x, +,...,+)(i-1, ...,
n + 2). Let S =S,...,,(U), U e R, then there exist S’
(<iI+) such that S( 5, S( x. Hence S:,S(x, lt+)
(i-1, n+2) from +,..,,,+<*+, and hence S2(x,*+)U(i-1, ...,n+2). Since from the first assumption S2(x,H+) inter-
sects a most n+l sets of lt, it must be U-U for some i, j
with ij. Then y e S(y, ,...,,), and hence we conclude (y, y)
1/2 +... +1/2< e.

Sufficiency. We denote by p(x, y) a metric satisfying the con-
dition of this theorem. Then we denote by M a maximal subset of
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R such that x, y M and x y imply p(x, y)>_ 1/2. From the maximal
property of M, ’-[S/.(x)ix M} is obviously an open coverin of
R. From the properties of (x, y) and of M it is also obvious that
S/(x) intersects at most n + 1 sets of i for every point x of R.
Put = [[Sn(y)lY S/(x)} ]y i}, then every S/(x) intersects
at most n+l sets of . If we put li=[S(x)[x

111/2 <1 111/2+ 1/28.

Next we denote by M a maximal subset of R such that x,y e M
and xy imply g(x, y)l/2. = [S/:(x)lx M:} covers R, and S/:(x)
intersects at most n + 1 sets of ’ in the same way. Hence every
S/(x) intersects at mos n+l sets of = [[S/(y)y S/(x)}lx
e M}. Furthermore it holds obviously H2,0<lI1/2s<
<<. By repeating such processes we get a sequence >:
>>>..- of open coverings of R such that every set of +
intersects at most n + 1 se’ts of and such that
(re=l, 2, ...). Hence we conclude dim R n from the firstly stated
theorem by the author.

As is easily seen from the proof of this theorem, we can state
this theorem in the following form.

Corollar 1. In order that dimRn .for a metrizble space R
is necessary and sucient that one can assign a metric p(x, y)agree-
ing with the topology of R such that for every 0 and for some
(e)> O, p(S)(x), y) < (i= 1, ..., n + 2) imply p(y, y) < e for some
i, j with i j.

We can deduce the following proposition proved by J. de Groot)

from our %heorem for the special case of n-0.

Corollar 2. A metrizable space R is O-dimensional if and only

if one can assign a metric which satisfies p(x,z)max[g(x,y), g(y,z).
Proof. Let direR-0, then from our heorem we can assign a

metric g(x, y) such that g(S/:(x), y)< e (i=1, 2) imply (y, y:)
Hence if we assume g(x, z)-e >max[(x, y), p(y, z)J for some x, y, z e R,
hen g(S/(y), x) <, (S/:(y), z) < e and p(x, z)- e, which contradict the
character of g(x, y). Therefore it must be p(x, z)max[(x,y), g(y, z).

Conversely, let p(x, y) be a metric such that g(x,z)maxp(x,y),
p(y,z), and let us assume that g(S/(x),y)<e (i=1,2) Then there
exist x, x e S/(x) such that pixy, y) < e (i=1, 2). Since
we get g(y, y:)maxg(y, x), (x, y)max[g(x, y,), pixy, x), e(x:, y:)J

6) Non Archimedean metrics in topology (1954), to be published. See J. de Groat
and H. de Vries" A note on non-Archimedean metrizations, Proceedings Koninkl.
Nederl. Akademie van Wetenschappen, Series A, 58, No. 2 (1955).


