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1. Fourier Series. V. A Divergence Theorem

By Shin-ichi Izumi
Department of Mathematics, Hokkaidd University, Sapporo, Japan
(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1957)

1. In the Mathematical Reviews [1], the following theorem is
reviewed.”

Theorem A. If f(x) is integrable and f(x)=0 in a closed set E
in (—m, ), then the Fourier series of f(x) converges to zero in each
density point of E, when

00

(1) 2108, )< o,

k=1

(8,) being intervals contiguous to E and «(8,f) denoting the oscillation
of f im the interval 3.

K. Tandori [2] proved that, in the above theorem, the condition
(1) can not be omitted; that is, there are a closed set £ and a con-
tinuous function f(x) such that f(x)=0 in E, x=0 is the density
point of E and the Fourier series of f(x) diverges at x=0.

We shall here prove that Theorem A is false,® that is,

Theorem 1. There are a closed set E of positive measure, with
=0 as a density point and an integrable function f(x) such that
Sf(®)=0 in E and the Fourier series of f(x) diverges at x=0 and
that the condition (1) is satisfied.

But Theorem A holds true when the integrability of f(x) is
replaced by its continuity. More generally,

Theorem 2. If f(x) ¢s an integrable function such that f(x)=0
in a closed set E in (—m, ), and
(2) St )< e,
where 8, denotes the closure of 8,, a contiguous interval of E. Then
the Fourier series of f(x) converges to zero im each density point of
E.

2. Proof of Theorem 1. Let (n,) be an increasing sequence
of integers such that n,>n,_}. Let (§,) be a sequence of open intervals
such that

SJC(W/(Zj'i']-)’ '7r/2j) (I=m, n+1,- -+, ng)
and the length of §, is O(1/5%). We put E=(—m, m)— V3§, We
define f(x) such that

1) The author could not refer the original paper.
2) We consider o (dz f) as the oscillation of the open interval 4§,
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f(x) =1/8,5log?J in §;
=0 otherwise in (—m, 7).
Then

ff(x)dx o1,
7= jlog®s

and hence f(x) is integrable Since 3] w(S,, f)=0, the condition (1) is
satisfied. Evidently =0 is a density point of E, and f(x)=0 in E.

Now the wmth partial sum of the Fourier series of f(x) at x=0
is

8,00, f)=1 f " i;ﬁl sin nz de+o(1)
_1 gfﬂ@_sin na da-+-o(1)
m J 5

7
=1 N ff;( )_sin nx de+J4-o(1)
T mp<isny 5, v
=I+J+o0(1),
say, then we have

n2

IzAn S [f@do=An, 3} L
55 = jlog®J

‘nZ
gAnkJ: “1]"’ >An, 1 .
logj 4, ., log n,
Let §,=(a,,b,). If §,C(mw/2n,} ), then

‘ff(x) sinn, xde| < <_A;¥_, 1 1
a, 8;log?®j-5 m,

<A (L < Amny,_]
= = )
My log® my,_y n, log® n;,_,

and hence

> ff;)smnkwdxl<A M-

——.’
6jc(qc/2nk_§,qc) 8 n, log® m,_,
which is o(1), when

n, > n,.3.
Furthermore
f f(@) sin n xdx‘<nk2f —
sjcco,qc/n,c“) 8j ] log j
=n 1 o Am

JZ”]C_H Jlog®j log 7.,

which is bounded when

(3) Npyy > €"E,

If we take (n,) such that (3) holds, then the Fourier series of f(x)
diverges at x=0.
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3. Proof of Theorem 2. Proof is almost evident. We can
suppose that =0 is a density point of E. Then

8,00, f )=l fﬂ j_i_@ sin na da4-o(1)

=lsf i%“lsin n dz+o(1),

where (8,) are contiguous intervals of E in a neighbourhood 4 of
x=0. Let §,=(ay, b,). Then

(f—fiwxlsin ne dx.é 2-2—’”7— max F@).
By the conditi’:m (2),
A= max [ f(t)[< .

When 4 is taken sufficiently small,

b,—a,<eb,
where ¢ is sufficiently small. Hence
,,lﬁ)lc,ﬁ< ,vl;,
a, 1—e
and then
S _by—a, _bo—a, b, _ ¢ )
a; ay b, a, 1—e
Thus
1 Ae
im sup | 5,(0, £) | =

Since ¢ may be taken as small as we please, we get our theorem.
From above proof, we get the following
Theorem 3. In Theorem 2, the condition (2) may be replaced by

> 1
,cgl%:[klf<t>|dt<w-
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