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1. Introduction. A topological space X is called an LC space
[7, p. 79 if for any point x of X and any neighborhood U of
there exists a neighborhood V of x such that any continuous mapping
g" si-->V, i--0, l,..., n, has an extension " E +1-+ U, where S is
an /-dimensional sphere and E is an (i+ 1)-dimensional element with
the boundary S. A topological space X is called a C space 7, p.
78_ if any continuous mapping g’s*X, i-O, 1,...,n, has an exten-
sion " E+I-->X. A topological space X is called an n-ES (resp. n-
NES) 6 for metric spaces if, whenever Y is a metric space, B is a
closed subset of Y such that dim (Y--B) n and g is any continuous
mapping B to X, there exists an extension of g from Y (resp.
some neighborhood of B in Y) to X. A metric space X is called an
n-AR (resp. n-ANR) for metric spaces if, whenever Y is a metric
space in which X is closed and dim (Y--X) n, X is a retract 1
of Y (resp. some neighborhood of X in Y).

In this paper, we shall prove the following theorems concerning
LC spaces:

Theorem 1. An n-dimensional metric space ’ is an ANR for
metric spaces if and only if it is an LC space.

Theorem 2. An n-dimensional LC metric space X is an n-ES for
metric spaces if and only if r,(X)-0, i-0, 1,..., n--l, and r(X) is
0 or the weak product of infinite cyclic groups, where r.(X) is the
j-dimensional homotopy group of X.

Theorem 3. For a metric space X the following conditions are
equivalent:

i) X is an LC space.
ii) X is an (n+I)-NES for metric spaces.

iii) X is an (n+1)-ANR for metric spaces.
Theorem 4. If X is an LC metric space, for each integer i--0,

1,..., n, the following conditions are equivalent:

i) X is a C space.
ii) X is an (i+I)-ES for metric spaces.

iii) X is an (i+I)-AR for metric spaces.
S. Lefschetz 7 proved Theorem 1 in case X is a compact

1) In this paper, we understand by "dimension" the covering dimension. (For
example, see [8, p. 350].)
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metric space. C. Kuratowski [6] proved Theorems 3 and 4 in case X
is a separable metric space. We shall show that these theorems hold
in case X is non-separable, too.

2. Proofs of the theorems. 1 ) The proof of Theorem 1. Since
an ANR for metric spaces is an LC space for each integer i, the "only
if" part of Theorem 1 is obvious. To prove the "if" part, by [3, (1.4),
p. 105, it is sufficient to show that for any positive number s there
exist continuous mappings X-K, K-X such that the mapping

:X->X is z-homotopic ) to the identity mapping, where K is a
Whitehead complex [2, p. 516.

We shall say that an open covering [= [U} of X has the
property with respect to an open covering ---{V} of X if for each
U there exists an element V such that any continuous mapping
g" s --> U, i-0, 1,. ., n, has an extension " E -V. For an open
covering It U] of X, denote by SII the open covering [St(U, 1I)},
where St( U, )= U UU 4), U e

We construct a sequence of open coverings [k, ; k--0, 1, 2,..-,
i- 1, 2,. ., n and j-n+ 1, n+2,. of X such that

1) S has the property LC with respect to _, k=l, 2,...,n;
2) S has the property LC with respect to l[}, j--n+1, n+2,

3) S[}/1 has the property LC with respect to 3j, j=n,n+l,

4) SI[ has the property LC with respect to 1t-, i--2, 3,..., n
and j-n+l, n+2,. .;

5) is a locally finite covering whose order n+l and the
diameter of each element of 3<min (/3, 1/2(/+1)).
Next, we construct the following open covering of the product space
Y of X and the open interval (0, 1). Take a point (x, t) of Y. Sup-

1 <t< 1 or 1 <l--t<-l, i--3,4,.... If i<n+l wepose
i i--1 i i--

select fixed one element V of / containing x. If i>n+ 1, we
select fixed one element V of containing x. Put v--t(x, FV),
where p is metric in X and FV means the frontier of V. Denote
by U(x, t) the spherical neighborhood of (x, t) in Y with the center
(x, t)and the radius . Since dim Y=n+l, there exists an open
covering of Y such that

1) is a locally finite and star refinement of U(x, t) (x, t) e Y};
2) the nerve M of is the (n+l)-dimensional Whitehead com-

plex.

2) Two continuous mappings fo, fl" X-- Y are called -homotopic if there exists
a continuous mapping H from XI to Y such that the diameter of H(x I) for
each point x of X and HIXO=fo, HIXI=fl.
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We construct Dugundji’s space II-X(0I)M and a continuous

mapping f"XI-> II [_4, (3.1)]. Put F--X -1-’’ Fo--X
0, 1/2 U(x, t) U(x, t)F 4= } and F1--X[1/2,1
U(x,t)F}. Denote by M, i=0, 1, the subcomplex of M spanned
by all vertexes {w:} of M such that f-l(w)F=. Put L--X
[i} M, i--0, 1. Denote by L., i--0, 1 and j-0, 1,..., n+l, the set
X [i} the j-section of M.
We shall construct a continuous mapping Ho" LoLX as follows.
Put Ho(x,i)--x, i--0,1. Take a vertex w of L, i--0,1. Select a

fixed point (x, t) of Y such that f(x,t)-w. Then we have
1

n--t- 1
or l--t< Put Ho(w)=x. By [4, (3.1), He is continuous. Let

n+l
WoW be a 1-simplex of L. If we denote element of corresponding
to v by W, j-0, 1, then W0W . Therefore, W St(Wo, ).
Since is a star refinement of [U(x,t)}, there exists U(x,t) con-
taining St(Wo, ). Let ,- be the projection XI-+X. There exists
the largest integer s such that r(U(x, t)) V3 for V3 e . Then s<n+ 1.
If f(Xo, to)--Wo and f(xl, tl)--w, we have XoXV. Since Ss has
the property LC with respect to ItS, we have a continuous mapping

of WoW into an element U of l[ such that

Define H on WoW by Ho(y)--(y), y e woW-. Thus we have a continuous

mapping H" LL->X. Take a 2-simplex WoWW. By the construc-
tion of H0, there exist Usl, U., U such that H(woW)U

U, H(w.Wo) U. Put s =min (s, so, s). Since U and Sit has
i=l

the property LC with respect to ltn-. We have an extension of H0
from wowWi into an element U:- of lI-. Thus we have a continuous
mapping Ho’LLX. By repeated application of this process, we
have Ho LoL -> X.

Let K be the nerve of B/ with Whitehead’s topology and let
be a canonical mapping of X into K. By a similar way as in the

above paragraph, we can construct a continuous mapping of K
into X such that for each simplex s of K and for each point x of X
there exist elements U and U’ of 3 such that (s)U and x’(x)

U’. Define H" L0L-X by H Lo--HolLo and HIL-HolL.
Then there exists an element of n containing H(s) for each s of
LoLI. Denote by M the j-section of M; j=0, 1,...,n+l. Take a

vertex w of M-UL. Select a point x of W, where W is the
i=0

element of corresponding to w. Define H." LoLM->X by
putting H LoL-H and H.(w)--x for w e M-L0L. By the
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construction of coverings 3, k--0, 1,..., n, and the definition of H.,
is extended to a continuous mapping (we use the same letter H:) of II
into X such that for each simplex s there exists an element of 0
containing H:(s). Define H"XI->X by H=H:f. Take a point x
of X. Let K be the nerve of the covering (x I) which we can
consider as a subcomplex of M. Then f(xI)x(Ol)K. By
the construction of H:, there exists an element V0 of 0 such that

H:(K) St(Vo, 30). But the diameter of St(Vo, 0)< e__. 3-. There-
3

fore, the homotopy H is an e-homotopy. This completes the proof
of Theorem 1.

(2) The proof of Theorem 2. The "if" part is a consequence
of Theorem 4 which we shall prove in the next section. To prove
the "only if" part, by the same way as in the proof of Theorem 1,
we can construct an n-dimensional complex P and mappings . (X, Xo)
->(P, Po), :(P,Po)-->(X, xo) such that 1 rel (Xo, Xo) in X, where
x0 is a point of Xand Po is avertex of P. Since Xis an n-ES, we
have r(X, x0)=0, i<n. By the well-known Hurewicz’s theorem, we
have 7rn(X Xo) Hn(X Xo) where H(X, Xo) is the n-dimensional homology
group of (X, x0) with the additive group of integers as coefficients.
Since H(X, Xo) is a direct factor of H,(P, Po) and P is the n-dimen-
sional complex, H(X, Xo) is 0 or the weak product of infinite cyclic
groups. This completes the proof.

(3) The proofs of Theorems 3 and 4. By a similar way as [5,
Thorme 2, p. 266-] and [6, Thorme 1, p. 273_, Theorem 4 is a
consequence of the following proposition:

Proposition 1. If X is a (non-separable) metric space, there exists
a metric space Y such that

i) X is a closed subset of Y;
ii) Y--X is an infinite complex with the metric topology [2;

iii) whenever Z is a metric space, A is a closed subset of Z
and g is a continuous mapping from A to X, g has an extension
from Z to Y.

Proof. According to [9, p. 186J, X can be imbedded in a convex
subset S of a normed vector space as a closed subset. For each point
s of S-X, denote by S(s) the spherical neighborhood of s in S with
the center s and the radius 1/2 p(s, X), where p is metric in S. There
exists an open covering = [U a e tg} of S-X such that

1) [ is a locally finite star refinement of the covering
sS--X};

2) 1I is irreducible, that is, for each a, there exists a point s
of U which does not belong to U for any of 2, a.
Consider the product space C=S II I, where I is the half open
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interval [0, ) with the usual topology. Any point of C is represented
by {slseS; klkeI,ae2 }. We identify S with the subset
aetg} of C. Denote by y the point {s;k--p(s,X) and k=0 for

/ a, / e 9} of C. If U., there exists a spherical neighbor-
i=O

hood S(s) such that [ US(s). Therefore, we can construct a
i=O

simplex s(a0,..., a) in C with the vertexes Y0,’", Y" Denote by
M the subset {s(a0,..., a)i(a0,’", a) rangs over all finite com-

binations of elements of 9 such that ] U. +} of C. Put Y=X-’M.
i=0

Let y, i--l, 2, be two points of Y such that yes(a,..., ). Then
ni

y, i--1, 2, are contained in a metric subset L-S H H I of X with
i=o j=0

the usual metric of the product space. If we define a metric (y, y)
in Y by a metric between y and y in L, Y is a metric subspace of
C. Let be a canonical mapping of S-X to M. Define a mapping

b" S-> Y by S--X-- and X=the identity mapping. If a sequence
{s, i=1, 2,...} of points of S--X has a limit point x in X and y=

(s)-- [[ e S; k(i), a e 9" i= 1, 2,... }, the sequence [} has the limit
point x. Let s(a,..., a), i--l, 2,..., the simplex of M containing y.
Then we have (y, ) max {k., j--0,..., n}, i--l, 2,... Since

lim max [k, j-0,...,n}-0, the sequence [y} has the limit point

x. Therefore is a continuous mapping.
Let g be a continuous mapping of a closed subset A of a metric

space Z to X. Since S is a convex normed vector space, g is an

extension g’ from Z to S (cf. 4, (3.1)). Put -g’. Then is a
required extension of g. This completes the proof.
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