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1. Introduction. A topological space X is called an LC™ space
[7, p. 79] if for any point & of X and any neighborhood U of x
there exists a neighborhood V of x such that any continuous mapping
g:8—>V, i=0,1,---,n, has an extension §: E'*'-> U, where S¢ is
an t-dimensional sphere and E’*!is an (¢+1)-dimensional element with
the boundary S’ A topological space X is called a C™ space [7, p.
78] if any continuous mapping ¢:s'—> X, ¢=0,1,---, n, has an exten-
sion §:E'**—>X. A topological space X is called an n-ES (resp. n-
NES) [6] for metric spaces if, whenever Y is a metric space, B is a
closed subset of Y such that dim (Y—B)<x»" and g is any continuous
mapping B to X, there exists an extension § of g from Y (resp.
some neighborhood of B in Y) to X. A metric space X is called an
n-AR (resp. n-ANR) for metric spaces if, whenever Y is a metric
space in which X is closed and dim(Y—X)=<n,” X is a retract [1]
of Y (resp. some neighborhood of X in Y).

In this paper, we shall prove the following theorems concerning
LC™ spaces:

Theorem 1. An n-dimensional metric space® is an ANR for
metric spaces if and only if it is an LC™ space.

Theorem 2. An n-dimensional LC™ metric space X is an n-ES for
metric spaces if and only if = (X)=0, 1=0,1,--.,2—1, and =, (X) is
0 or the weak product of infinite eyclic groups, where m(X) is the
j-dimensional homotopy group of X.

Theorem 3. For a metric space X the following conditions are
equivalent:

i) X is an LC" space.

ii) X is an (n+1)-NES for metric spaces.

iili) X is an (n+1)-ANR for metric spaces.

Theorem 4. If X is an LC™ metric space, for each integer 1=0,
1,..-,m, the following conditions are equivalent:

i) X is a C’ space.

i) X is an (¢41)-ES for metric spaces.

ili) X is an (¢+1)-AR for metric spaces.

S. Lefschetz [7] proved Theorem 1 in case X is a compact

1) In this paper, we understand by ‘‘dimension’’ the covering dimension. (For
example, see [8, p. 350].)
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metric space. C. Kuratowski [6] proved Theorems 3 and 4 in case X
is a separable metric space. We shall show that these theorems hold
in case X is non-separable, too.

2. Proofs of the theorems. (1) The proof of Theorem 1. Since
an ANR for metric spaces is an LC® space for each integer 4, the “only
if” part of Theorem 1 is obvious. To prove the “if” part, by [3, (1.4),
p. 105], it is sufficient to show that for any positive number ¢ there
exist continuous mappings ¢: X— K, ¥ : K— X such that the mapping
Y¢: X—X is e-homotopic® to the identity mapping, where K is a
Whitehead complex [2, p. 516].

We shall say that an open covering U={U,} of X has the LC"
property with respect to an open covering B={V;} of X if for each
U, there exists an element V, such that any continuous mapping
g:8"->U, 1=0,1,-.-,n, has an extension g§: E**'—V,. For an open
covering U= {U,} of X, denote by SU the open covering {St(U, W)},
where St(U,, W)= {U,|U,~U,*¢, U.cll}.

We construct a sequence of open coverings {%,, U} k=0,1,2,..-,
1=1,2,---,n and j=n-+1,n+2,---} of X such that

1) S3B, has the property LC™ with respect to B,_,, k=1,2,--.,n;

2) SB, has the property LC" with respect to U7, j=n+1,n+2,

3) SUj,, has the property LC" with respect to ¥, j=mn,n+1,

4) SUi has the property LC" with respect to Ui*!, 1=2,8,---,n
and j=n+1,n+2,--;

5) B, is a locally finite covering whose order <n-+1 and the
diameter of each element of B,<min (¢/3, 1/2(k+1)).
Next, we construct the following open covering of the product space
Y of X and the open interval (0,1). Take a point (x,t) of Y. Sup-

pose -17<t§,i or »]j—<1——t§ ,11, 1=8,4,--- . If 1<n+1, we

% 1—1 1 11—
select fixed one element V"*! of B,,; containing . If i>n+1, we
select fixed one element V' of ¥, containing x. Put 7,=p(x, F'V?),
where p is metric in X and F'V means the frontier of V. Denote
by U(x,t) the spherical neighborhood of (x,t) in Y with the center
(2,t) and the radius 7, Since dim Y=n-+1, there exists an open
covering B of Y such that

1) W is a locally finite and star refinement of {U(x,?)|(x,t)e Y};
2) the nerve M of W is the (n+1)-dimensional Whitehead com-
plex.

2) Two continuous mappings f;, f;: X—Y are called e-homotopic if there exists
a continuous mapping H from XxI to Y such that the diameter of H(xxI)=<e for
each point ¢ of X and H|Xx0=f,, H|Xx1=f,.
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We construct Dugundji’s space II=XX(0~1)~M and a continuous
. 1 n

a :XxI->1I [4,(31)]. Put F=X [ "] F=XX
mapping f —1I [4,(8.1)]. Pu X nil n+1] o
[0, 3] = {U(, )| Ulx,) ~F ¢} and F,=Xx[31]—~{U?)]
U(w,t)~F =¢}. Denote by M,, =0, 1, the subcomplex of M spanned
by all vertexes {w,} of M such that f-(w,)~F,%¢. Put L,=XX
{1} ~M,, 1=0,1. Denote by L{, ©=0,1 and j=0,1,---,n-+1, the set
XX {i}~ the j-section of M,
We shall construct a continuous mapping H,:L,~L,—X as follows.
Put Hyx,7)=2, 1=0,1. Take a vertex w of L, 1=0,1. Select a
fixed point (x,t) of Y such that f(x,t)=w. Then we have t<n—_1|_T
or 1~t<w;1!:»14. Put Hy(w)==. By [4, (8.1)], H, is continuous. Let

n

w,w; be a 1-simplex of L, If we denote element of T corresponding
to v, by W,;5=0,1, then Wy~ W,=¢. Therefore, W, St(W,, B).
Since W is a star refinement of {U(x,t)}, there exists U(x,t) con-
taining St(W,, ). Let + be the projection X X I-X. There exists
the largest integer s such that ~(U(x, t))C V; for VieB,. Then s<n-+1.
If f(wy,t)=w, and f(x,t,)=w, we have x,~x, CV: Since S, has
the property LC" with respect to lI”, we have a continuous mapping
w of wyw, into an element U? of U such that w|w,—w,=H|w,~w,.
Define H on w,w, by Hy(y)=u(y), ¥y ¢ wyw,. Thus we have a continuous
mapping H:L)~L!—X. Take a 2-simplex w,w,w,. By the construc-
tion of H,, there exist Uy, Uy, U such that H(wyw,) C U, H(ww,)C

[ 3

Us,, H(wsw,)CU;.. Put s=min(s,s,, s;). Since ) Ui % ¢ and SUf has
i=1

the property LC™ with respect to Ur-!. We have an extension of H,

from w,w,w, into an element U~ of 1I*-*, Thus we have a continuous
mapping H,: L}~ L:—>X. By repeated application of this process, we
have H,: L,~L,—X.

Let K be the nerve of %B,,, with Whitehead’s topology and let
¢ be a canonical mapping of X into K. By a similar way as in the
above paragraph, we can construct a continuous mapping ¥ of K
into X such that for each simplex s of K and for each point & of X
there exist elements U and U’ of ¥, such that ¥(s)CCU and z¥¢(x)
CU'. Define H,:L,~L,~X by H,|L,=H,|L, and H,|L,=v¥¢H,|L,.
Then there exists an element of ¥, containing Hi(s) for each s of
Ly~ L,. Denote by M’ the j-section of M, j=0,1,--.,n+1. Take a
vertex w of M°— LIJOLi. Select a point x of W, where W is the
element of W corresponding to w. Define H,:L,~L,~M°—>X by
putting H,|L,~L,=H, and Hy(w)=x for we M°—L,~L,. By the
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construction of coverings 3B,, k=0,1,- -, n, and the definition of H,, H,
is extended to a continuous mapping (we use the same letter H,) of II
into X such that for each simplex s there exists an element of 3,
containing Hy(s). Define H:XxI—>X by H=H,f. Take a point «
of X. Let K, be the nerve of the covering W ~(xXxI) which we can
consider as a subcomplex of M. Then f(xXI)CxX(0-1)~K,. By
the construction of H,, there exists an element V, of ¥, such that

H,(K,)C St(V,, B,). But the diameter of St(V,, 230)<7§—'3=s. There-

fore, the homotopy H is an c-homotopy. This completes the proof
of Theorem 1.

(2) The proof of Theorem 2. The “if” part is a consequence
of Theorem 4 which we shall prove in the next section. To prove
the “only if” part, by the same way as in the proof of Theorem 1,
we can construct an n-dimensional complex P and mappings ¢ : (X, x,)
—>(P, po), ¥:(P,p,)—>(X,x,) such that ¥p=~=1 rel(x,2,) in X, where
2, is a point of X and p, is a vertex of P. Since X is an n-ES, we
have 7 (X, 2,)=0, i<n. By the well-known Hurewicz’s theorem, we
have 7, (X, x,)~ H,(X, «,), where H, (X, «,) is the n-dimensional homology
group of (X, x,) with the additive group of integers as coefficients.
Since H, (X, x,) is a direct factor of H,(P, p,) and P is the n-dimen-
sional complex, H,(X, x,) is 0 or the weak product of infinite cyclic
groups. This completes the proof.

(8) The proofs of Theorems 3 and 4. By a similar way as [5,
Théoréme 2, p. 266] and [6, Théoréme 1, p. 278], Theorem 4 is a
consequence of the following proposition:

Proposition 1. If X is a (non-separable) metric space, there exists
a metric space Y such that

i) X is a closed subset of Y;

ily Y—X is an infinite complex with the metric topology [2];

iii) whenever Z is a metric space, A is a closed subset of Z
and g is a continuous mapping from A to X, g has an extension §
from Z to Y.

Proof. According to [9, p. 186], X can be imbedded in a convex
subset S of a normed vector space as a closed subset. For each point
s of S—X, denote by S(s) the spherical neighborhood of s in S with
the center s and the radius % p(s, X), where p is metric in S. There
exists an open covering U={U,|ac®Q} of S—X such that

1) U is a locally finite star refinement of the covering {S(s)|
seS—X};

2) U is irreducible, that is, for each «, there exists a point s,
of U, which does not belong to U, for any 8 of 2, B=a.

Consider the product space C=S X Il I,, where I, is the half open

[1=3¢]
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interval [0, «) with the usual topology. Any point of C is represented
by {s|seS; k.|k.cl,ac2}. We identify S with the subset {s; k,=0]|
aef} of C. Denote by y, the point {s,; k.,=p(s, X) and k;=0 for

Bxa, BeR} of C. If (n] U.,=¢, there exists a spherical neighbor-
i=0

hood S(s) such that LnJ U,,CS(s). Therefore, we can construct a
i=0

simplex s(ay,: -, a,) in C with the vertexes ¥,, -, ¥,,. Denote by
M the subset “ {s(ay,---,@,)]|(ay- -+, a,) rangs over all finite com-

binations of elements of £ such that ﬁ U, ¢} of C. Put Y=X“M.
=0

Let y,, ©=1,2, be two points of Y such that y,es(ai,- -+, a},). Then
1 n

Y, =1, 2, are contained in a metric subset L=S x IT II Ia;' of X with
=0 j=0

the usual metric of the product space. If we define a metric p(¥,, ¥s)

in Y by a metric between y, and %, in L, Y is a metric subspace of

C. Let ¢ be a canonical mapping of S—X to M. Define a mapping

$:S—>Y by J)]S —X=¢ and <7>]X =the identity mapping. If a sequence
{8y 1=1,2,.--} of points of S—X has a limit point 2 in X and y,=

$(si)= {3;13,€8; ku(i), e 2: ©=1,2,---}, the sequence {3;} has the limit
point 2. Let s(af,---,ad,), 1=1,2,- -, the simplex of M containing y,.
Then we have p(y, 3;) < max {kag, 7=0,--+,m,;}, 1=1,2,--- . Since
lim max {k,,;, j=0,---,m,} =0, the sequence {y,} has the limit point
i»o0
z. Therefore ;I; is a continuous mapping.

Let g be a continuous mapping of a closed subset A of a metric
space Z to X. Since S is a convex normed vector space, g is an

extension ¢’ from Z to S (cf. [4, (3.1)]). Put j=gg’. Then § is a
required extension of g. This completes the proof.
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