252 [Vol. 33,

65. On Weakly Compact Regular Spaces. I

By Kiyoshi Iséki

Kobe University

(Comm. by K. Kunugi, M.J.A., May 15, 1957)

In their paper [3], S. Mardešić and P. Papić introduced a new kind of space, weakly compact topological space.

Let Φ be a family of subsets in topological space S. A point x of S is called a point accumulation of Φ , if every neighbourhood of x meets infinitely many members of Φ .

Definition. A topological space S is called weakly compact, if any family of disjoint non-empty open sets has at least one point of accumulation. S. Mardešić and P. Papić proved the following interesting proposition: A regular space is weakly compact if and only if any open countable covering has the AU property in the sense of present writer.

The proposition gives some elementary properties of a weakly compact regular space, which are analogous for the case of an absolute closed space (cf. M. Katětov $\lceil 1 \rceil$).

Theorem 1. A necessary and sufficient condition that a regular space S be weakly compact is that for every family of countable open sets G_n $(n=1, 2, \cdots)$ of S having the finite intersection property the intersection of all \overline{G}_n is non-empty.

Proof. To prove the necessity of Theorem 1, let G_n be a given family of countable open sets having the finite intersection property. Suppose that $\bigcap_{n=1}^{\infty} \overline{G}_n = \phi$, then $S = S - \bigcap_{n=1}^{\infty} \overline{G}_n = \bigcup_{n=1}^{\infty} (S - \overline{G}_n)$ and $S - \overline{G}_n$ ($n = 1, 2, \cdots$) is an open covering of S. Hence we can find an index N such that $\bigcup_{n=1}^{N} \overline{S - \overline{G}_n} = S$.

Since each G_n is open, we have $\bigcap_{n=1}^N G_n = 0$ which is a contradiction.

Conversely, let O_n $(n=1,2,\cdots)$ be disjoint non-empty open sets. Let $G_n = \bigcup_{k=n}^{\infty} O_k$, then $\{G_n\}$ has the finite intersection property. Hence $\bigcap_{n=1}^{\infty} \overline{G}_n \neq \phi$. For p of $\bigcap_{n=1}^{\infty} G_n$, any neighbourhood V(p) of p meets each G_n $(n=1,2,\cdots)$. Therefore V(p) meets infinitely many of O_n . Q.E.D.

Let S be a weakly compact regular space, and suppose that $\{F_n\}$ be a decreasing sequence of closed sets such that $\operatorname{Int} F_n \neq \phi$, where $\operatorname{Int} F$ is the interior of F. Then $\operatorname{Int} F_n$ are non-empty open sets having the finite intersection property, and $F_n \supset \operatorname{Int} F_n$ for each n.

By Theorem 1, we have $\bigcap_{n=1}^{\infty} \overline{\operatorname{Int} F_n} \neq \phi$, and therefore $\bigcap_{n=1}^{\infty} F_n \neq \phi$.

By a similar argument, if a regular space S is weakly compact, for every countable family of closed sets $\{F_n\}$ such that the family has the finite intersection property and the interior of each closed set F_n is non-empty, then $\bigcap_{n=1}^{\infty} F_n$ is non-empty.

Conversely, suppose that the conclusion of the statement above for a regular space holds, then we shall consider a countable non-empty open sets G_n having the finite intersection property. From Int $\overline{G_n} \supset G_n$, Int $\overline{G_n}$ for all n are non-empty. Hence $\bigcap_{n=1}^{\infty} \overline{G_n} \neq \phi$. By Theorem 1, the space S is weakly compact. Therefore we have

Theorem 2. For a regular space S the following statements are equivalent:

- 1) S is weakly compact.
- 2) For every countable non-empty open sets G_n of S having the finite intersection property, the intersection of \overline{G}_n is non-empty.
- 3) For every countable closed sets F_n of S having the finite intersection property, if Int $F_n \neq \phi$, then $\bigcap_{n=1}^{\infty} F_n \neq \phi$.
- 4) For every decreasing sequence of non-empty open sets G_n , $\bigcap_{i=1}^{\infty} \overline{G}_n \neq \phi$.
- 5) For every decreasing sequence of closed sets F_n such that Int $F_n
 eq \phi$, $\bigcap^{\infty} F_n
 eq \phi$.

The characterization 5) was given by S. Mardešić and P. Papić [3, Th. 3].

Theorem 3. If a regular space is a continuous image of a weakly compact regular space, then it is weakly compact.

Proof. Let S_1 be a weakly compact regular space, and let S_2 be the image of S_1 by continuous mapping f. To prove the weakly compactness of S_2 , take a countable open covering U_n $(n=1,2,\cdots)$ of S_2 , then $f^{-1}(U_n)$ is a countable open covering of S_1 . Since S_1 is regular, there are finite numbers of open sets $f^{-1}(U_{n_i})$ $(i=1,2,\cdots,k)$ such that $\bigcup_{i=1}^k \overline{f^{-1}(U_{n_i})} = S_1$. By the continuity of f, $\bigcup_{i=1}^k \overline{U_{n_i}} = S_2$. Hence, S_2 is weakly compact.

Theorem 4. The closure of an open set O in a weakly compact regular space S is weakly compact.

Proof. Let $\{O_n\}$ be a countable open covering of \overline{O} , then there are open sets O'_n in S such that $O_n = O'_n \frown \overline{O}$. Therefore O'_n and $S - \overline{O}$ are a countable open covering of S, hence we can find O'_{n_i} (i=1,2,1)

$$\frac{\cdots,k) \text{ such that } \bigcup\limits_{i=1}^k \overline{O}_{n_i} \smile (\overline{S-\overline{O}}) = S. \quad \text{Therefore } \bigcup\limits_{i=1}^k \overline{O}_{n_i}' \supset O, \text{ and by } \\ \overline{O \cap \bigcup\limits_{i=1}^k O'_{n_i}} = \overline{O \cap \bigcup\limits_{i=1}^k O'_{n_i}}, \text{ we have }$$

$$\bigcup_{i=1}^k \overline{O}_{n_i} \supset \overline{O}.$$

This shows that \overline{O} is weakly compact. As an application of Theorems 3 and 4, we shall show

Theorem 5. Let S_1 be a weakly compact regular space, and let f be a 1-1 continuous mapping of S_1 onto a regular space S_2 . Then O of S_1 is regularly open if and only if f(O) is regular open.

Proof. Let $O_2 = f(O_1)$, then $f(\overline{O_1})$ is closed by Theorems 3 and 4. Therefore $\overline{O_2} = f(\overline{O_1})$ and $S_2 - \overline{O_2} = f(S_1 - \overline{O_1})$. Similarly $f(S_1 - \overline{O_1})$ is closed and we have $f(\overline{S_1} - \overline{O_1}) = \overline{S_2} - \overline{O_2}$. This shows Int $\overline{O_2} = f(\operatorname{Int} \overline{O_1})$.

Let R be a dense subset of S. Then R is said to be paracombinatorially imbedded in S, if for any finite open sets O_i in R_1 , $\bigcap_{i=1}^n O_i = \phi$, then $\bigcap_{i=1}^n \overline{O}_i \subset R$.

Theorem 6. Let R be paracombinatorially imbedded in a weakly compact regular space S, and let T be a one-to-one continuous image of S by f.

Then f(R) is combinatorially imbedded in T.

Proof. Let H_1 , H_2 be relatively open sets in f(R) and $H_1 \cap H_2 = \phi$. We shall show $\overline{H}_1 \cap \overline{H}_2 \subset f(R)$. To prove it, let $f(a) = b \in \overline{H}_1 - f(R)$, then, by Theorem 3, $a \in \overline{f^{-1}(H_1)} - R$. Therefore, by the assumption, $a \in S - \overline{f^{-1}(H_2)}$, $b \in T - f(\overline{f^{-1}(H_2)})$. Since $f(\overline{f^{-1}(H_2)})$ is closed, we have $b \in T - \overline{H}_2$. Hence $\overline{H}_1 \cap \overline{H}_2 \subset f(R)$. Q.E.D.

The methods of the proofs of Theorems 4, 5 and 6 are due to M. Katětov [2].

By a result of S. Mardešić and P. Papić [3, Th. 1] and Theorem 1, we have the following

Theorem 7. A necessary and sufficient condition that a completely regular space S be pseudo-compact is that for every family of countable open sets G_n of S having the finite intersection property the intersection of all \overline{G}_n is non-empty.

References

- [1] M. Katětov: Über *H*-abgeschlossene und bikompakte Räume, Cas. Mat. Fys., **69**, 36–49 (1940).
- [2] M. Katětov: On H-closed extensions of topological spaces, Cas. Mat. Fys., 72, 17-32 (1947).
- [3] S. Mardešić et P. Papić: Sur les espaces dont toute transformation réelle continue est bornée, Glasnik Mat.-Fiz. i Astr., 10, 225-232 (1955).