338 [Vol. 33,

85. On the Completion of the Ranked Spaces

By Hatsuo Okano

(Comm. by K. Kunugi, M.J.A., June 12, 1957)

1. In this note we shall consider the problem of completion: 12 construction of a complete ranked space 22 containing a given ranked space as a dense subspace.

Definition 1. Let R be a ranked space.³⁾ For a family F of fundamental sequences of R, we shall call a coordinate of F every neighbourhood v(p) which is the first term of a fundamental sequence belonging to F. For two families F, G of fundamental sequences, $F \ge G$ means that, for every coordinate v(p) of F, there exists a coordinate u(q) of G such that $v(p) \supseteq u(q)$.

Definition 2. For a point p of R, $\mathfrak{S}(p)$ denotes the set of all fundamental sequences $u = \{u_a(p_a)\}$ such that $p_a \equiv p$. Let R^* be the family of all families p^* of fundamental sequences satisfying the following conditions:

- (1) If $u_{\alpha} = \{u_{\beta}^{\alpha}(p_{\beta}^{\alpha}); 0 \leq \beta < \omega_{\mu_{\alpha}}\}\ (0 \leq \alpha < \gamma < \omega_{\nu})$ belongs to p^{*} and $\lambda_{\alpha}(0 \leq \lambda_{\alpha} < \omega_{\mu_{\alpha}})$ is an ordinal number, then there exists a member $u = \{u_{\beta}(p_{\beta})\}$ of p^{*} such that $u_{0}(p_{0}) \subseteq \bigcap_{\alpha} u_{\lambda_{\alpha}}^{\alpha}(p_{\lambda_{\alpha}}^{\alpha})$.
- (2) If $u = \{u_{\alpha}(p_{\alpha})\}$, $v = \{v_{\beta}(q_{\beta})\} \in p^*$, $u_{0}(p_{0}) \in \mathfrak{B}_{r_{0}}$, $v_{0}(q_{0}) \in \mathfrak{B}_{r'_{0}}$, $\gamma_{0} < \gamma'_{0}$ and $u_{0}(p_{0}) \supseteq v_{0}(q_{0})$, then there exist a rank γ and $u(p_{0})$ of rank γ such that $\gamma_{0} < \gamma \le \gamma'$ and $u_{0}(p_{0}) \supseteq u(p_{0}) \supseteq v_{0}(q_{0})$.
- (3) $p^* \geq \mathfrak{S}(p)$ for any p except the case $p^* = \mathfrak{S}(p)$.

Then we obtain easily the following

Lemma 1. $\mathfrak{S}(p)$ satisfies the conditions (1) and (2). And, for an ω_{ν} -fundamental sequence $v = \{v_{\alpha}(p_{\alpha}); \ 0 \le \alpha < \omega_{\nu}\}$, let v^{β} denote the fundamental sequence $\{v_{\alpha}(p_{\alpha}); \ \beta \le \alpha < \omega_{\nu}\}$ and v^{*} the set of such v^{β} , $0 \le \beta < \omega_{\nu}$. Then v^{*} satisfies the conditions (1) and (2).

Definition 3. For two members p^* , q^* of R^* , put $p^* \approx q^*$ if $p^* \geq q^*$ and $p^* \leq q^*$. By this equivalence relation, we shall classify R^* and denote this classification by \widehat{R} . Let $W(V, \widehat{p})$, where \widehat{p} is a point of \widehat{R} and V is a coordinate of some p^* belonging to \widehat{p} , denote the set of all

¹⁾ Prof. K. Kunugi studied this problem in the notes "Sur les espaces complets et régulièrement complets. I-III", Proc. Japan Acad., **30**, 553-556, 912-916 (1954); **31**, 49-53 (1955).

²⁾ See, for the notions and the terminologies, K. Kunugi, I., *Op. cit.*, H. Okano: Some operations on the ranked spaces. I, Proc. Japan Acad., **33**, 172–176 (1957) and H. Okano: On closed subspaces of the complete ranked spaces, Proc. Japan Acad., **33**, 336–387 (1957).

³⁾ The rank of R is given by ω_{ν} . See K. Kunugi, I., Op. cit.

elements \hat{q} of \hat{R} such that, for some coordinates U of q^* of \hat{q} , $I\{U\}^{4}$ $\subseteq V$. Take all $W(V, \hat{p})$ for the neighbourhoods of \hat{p} in \hat{R} . Then F. Hausdorff's axiom (A)⁵⁾ is satisfied.

Lemma 2. $\omega(\hat{R}) \geq \omega_{\nu}$.

Proof. For any point \hat{p} of \hat{R} and any sequence of neighbourhoods $W(V_0, \hat{p}) \supseteq W(V_1, \hat{p}) \supseteq \cdots \supseteq W(V_a, \hat{p}) \supseteq \cdots$, $0 \le \alpha < \gamma < \omega_{\nu}$ of \hat{p} , there exists $p_a^* \in \hat{p}$, for any α , such that V_a is a coordinate of p_a^* : there exists a fundamental sequence $u_a = \{u_{\beta}^{\alpha}(p_{\beta}^{\alpha}); 0 \le \beta < \omega_{\mu_a}\} \in p_a^*$ such that $u_0^{\alpha}(p_0^{\alpha}) = V_a$. Since $p_a^* \approx p_0^*$ for each α , then, by the condition (1), there exists a fundamental sequence u of p_0^* whose first term U is contained in $\bigcap_{\alpha} V_a$. So $W(U, \hat{p}) \subseteq \bigcap_{\alpha} W(V_a, \hat{p})$ and, hence, $\omega(\hat{R}, \hat{p}) \ge \omega_{\nu}$ for any \hat{p} of \hat{R} . And consequently $\omega(\hat{R}) > \omega_{\nu}$.

Definition 4. We shall give a rank to \widehat{R} . Choose a representative p^* from each \widehat{p} but, if $\widehat{p} \ni \mathfrak{S}(p)$, we shall choose $\mathfrak{S}(p)$. Put $\mathfrak{V}_{\alpha}(0 \leq \alpha < \omega_{\nu})$ = the set of every $W(V, \widehat{p})$ such that V is of rank α and a coordinate of a representative of a point. Then axiom (a) is satisfied and \widehat{R} is a ranked space.

2. We shall, hereafter, assume the following axioms for R.

Axiom (T₁). For any two distinct points p and q, there exists a neighbourhood v(p) of p and u(q) of q such that $q \notin I\{v(p)\}$ and $p \notin I\{u(q)\}$.

Axiom (C'). If a point q is contained in a neighbourhood v(p), then there exists a neighbourhood u(q) of q such that $I\{u(q)\} \subseteq v(p)$.

By axiom (T_1) , $\mathfrak{S}(p) \in \mathbb{R}^*$ for every p of R. We shall denote by $\varphi(p)$ the element of \widehat{R} containing $\mathfrak{S}(p)$.

Lemma 3. In \widehat{R} , for any ω_{ν} -fundamental sequence $W = \{W_{\alpha}(\widehat{p}_{\alpha}); 0 \leq \alpha < \omega_{\nu}\}$, we have $\bigcap I\{W_{\alpha}(\widehat{p}_{\alpha})\} \neq 0$.

Proof. Let

 $W(V_0, \hat{p}_0) \supseteq \cdots \supseteq W(V_a, \hat{p}_a) \supseteq \cdots$, $0 \le \alpha < \omega_{\nu}$, $W(V_a, p_a) \in \mathfrak{B}_{\tau a}$, be a fundamental sequence in \hat{R} . Then for each α there are a representative p_a^* of \hat{p}_a and a fundamental sequence $u_a = \{u_{\beta}^a(p_{\beta}^a)\}$ of R contained in p_a^* such that $u_0^a(p_0^a) = V_a$. Then, by axiom (C'),

$$u_0^0(p_0^0) \supseteq u_0^1(p_0^1) \supseteq \cdots \supseteq u_0^\alpha(p_0^\alpha) \supseteq \cdots$$

And, by the condition (2), for each α , there exist a rank γ'_{2a} and $w_{2a}(p_0^{2a})$ of rank γ'_{2a} such that $\gamma_{2a} < \gamma'_{2a} \le \gamma_{2a+1}$ and $u_0^{2a}(p_0^{2a}) \supseteq w_{2a}(p_0^{2a}) \supseteq u_0^{2a+1}(p_0^{2a+1})$. Put

⁴⁾ For a subset A, $I\{A\}$ denotes the *interior* of A: $p \in I\{A\}$ if and only if there exists a neighbourhood v(p) of p such that $v(p) \subseteq A$.

⁵⁾ F. Hausdorff: Grundzüge der Mengenlehre, 213 (1914).

⁶⁾ See K. Kunugi, I., Op. cit., Définition 2.

$$q_a = \left\{egin{array}{ll} p_0^lpha & ext{if } lpha & ext{is even} \ p_0^{lpha-1} & ext{if } lpha & ext{is odd,} \end{array}
ight. \qquad v_lpha(q_a) = \left\{egin{array}{ll} u_0^lpha(p_0^lpha) & ext{if } lpha & ext{is even} \ w_{lpha-1}(p_0^{lpha-1}) & ext{if } lpha & ext{is odd.} \end{array}
ight.$$

Then $v = \{v_{\alpha}(q_a); \ 0 \le \alpha < \omega_{\nu}\}$ is a fundamental sequence of R. If $v^* \ge \mathfrak{S}(p)$ for some p, then $\varphi(p) \in \bigcap_{a} I\{W(V_a, \hat{p}_a)\}$. If $v^* \trianglerighteq \mathfrak{S}(p)$ for every p, then, by Lemma 1, $v^* \in R^*$. Let \hat{v} be the class which contains v^* , then $\hat{v} \in \bigcap I\{W(V_a, \hat{p}_a)\}$.

Theorem 1. If, for any fundamental sequence $u = \{u_{\alpha}(p_{\alpha}); 0 \le \alpha \le \omega_{\mu}\}$ such that $\omega_{\mu} \le \omega_{\nu}$, we have $\bigcap_{\alpha} I\{u_{\alpha}(p_{\alpha})\} \neq 0$ in R, then \hat{R} is complete.

Proof. Let $\{W(V_a, \hat{p}_a); 0 \leq \alpha < \omega_{\mu}\}$, be a fundamental sequence in \hat{R} . If $\omega_{\mu} = \omega_{\nu}$. $\bigcap_{\alpha} I\{W(V_a, \hat{p}_a)\} \neq 0$ by Lemma 3. If $\omega_{\mu} < \omega_{\nu}$, we can easily verify that $\bigcap_{\alpha} I\{V_a\}$ contains at least a point of R, say p. Then $\varphi(p) \in \bigcap I\{W(V_a, \hat{p}_a)\}$.

Theorem 2. $\varphi(R)^{8}$ is dense in \widehat{R} for the both topologies: $\varphi(R) = \widehat{\varphi(R)} = \widehat{\varphi(R)} = \widehat{\varphi(R)}$.

Proof. For any point \hat{p} of \hat{R} and any neighbourhood $W(V, \hat{p})$ of \hat{p} , there exists a fundamental sequence $u = \{u_a(p_a)\}$ of R such that $V = u_0(p_0)$. Then we have $\varphi(p_0) \in W(V, \hat{p})$ and consequently $\overline{\varphi(R)} = \hat{R}$. Let \hat{p} be any point of \hat{R} , p^* an element of \hat{p} and $v = \{v_a(p_a)\}$ a fundamental sequence of p^* . Since $v_a(p_a)$ is a coordinate of $\varphi(p_a)$ and $\hat{p} \in \bigcap_a I\{W(v_a(p_a), \varphi(p_a))\}$, then we have $\widehat{\varphi(R)} = \hat{R}$.

Theorem 3. The mapping φ : $p \rightarrow \varphi(p)$ is one-to-one and bi-continuous for the both topologies.

- Proof. (i) φ is one-to-one: let p, q be two distinct points of R, then, by axiom (T'₁), there exist u(p) and v(q) such that $p \notin I\{v(q)\}$ and $q \notin I\{u(p)\}$. Hence $\varphi(p) \neq \varphi(q)$.
- (ii) φ is bi-continuous: it results from the fact that $\varphi(v(p)) = W(v(p), \varphi(p))$ and, for each $p^* \in \varphi(p)$, $p^* \ge \mathfrak{S}(p)$.
- 3. Remark 1. If R is a metric space, then the completion \widehat{R} in our sense coincides with the classical one.

Remark 2. The hypothesis of Theorem 1 is satisfied if $\omega_{\nu} = \omega_0$ in R. Remark 3. We shall denote by $\omega^*(R)$ the depth of R in T. Shirai's sense (T. Shirai: A remark on the ranked space. II, Proc. Japan Acad., 33, 139-142). If $\omega^*(R) \ge \omega_{\nu}$, then the hypothesis of Theorem 1 is satisfied.

⁷⁾ See Remarks 1 and 2 of Section 3.

⁸⁾ $\varphi(R)$ denotes the set of all points \hat{p} of the form $\hat{p} = \varphi(p)$, where $p \in R$.

⁹⁾ See H. Okano: On closed subspaces of the complete ranked spaces, Op. cit.