92. AU-covering Theorem and Compactness

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., July 12, 1957)

To characterize a countably compact normal space, the present author introduced the concept of AU-property of covering [2-7]. In this paper, we shall discuss the AU-covering theorem of a topological space.

Let S be a topological space, and let φ be an open covering of S. By $\overline{\phi}$, we denote the power of the set of elements of φ . A covering φ is said to be *AU-reducible*, if it contains a subfamily ψ of lower power than $\overline{\phi}$ such that the union of the closures of elements of ψ is S, otherwise it is *AU-irreducible*.¹⁾

For our discussion, we shall use some classical concepts which were introduced by E. W. Chittenden [1].

$$O_1, O_2, \cdots, O_{\alpha}, \cdots \quad (\alpha < \omega_{\mu})$$

where ω_{μ} is the initial ordinal of \aleph_{μ} and, for each α , there is an element p_{α} such that $p_{\alpha} \in \overline{O}_{\alpha}$ and $p_{\alpha} \in \overline{O}_{\beta}$ ($\beta < \alpha$). The set $\{p_{\alpha} \mid \alpha < \omega_{\mu}\}$ is said to be an associate set of the normal covering \mathcal{P} . It is clear that every normal covering is AU-irreducible. Now we shall prove the following fundamental

Theorem 1. Every open covering φ contains a normal covering. Proof. Let φ_1 be an AU-irreducible subcovering of φ , and let

$$(1) O_1, O_2, \cdots, O_{\mu}, \cdots \quad (\alpha < \omega_{\mu})$$

be a well-ordered set of the type ω_{μ} of φ_1 . To construct a normal subfamily ψ of φ_1 , let $O_{\alpha_1} = O_1$, and take $p_2 \in S - \overline{O}_{\alpha_1}$, let O_{α_2} be the first term of the transfinite sequence (1) such that $O_{\alpha} \ni p_2$. Suppose that $O_{\alpha_{\nu}}$ ($\nu < \beta$) is defined, then we shall define $O_{\alpha_{\beta}}$ as follows: take $p_{\beta} \in S - \bigcup_{\nu < \beta} \overline{O}_{\alpha_{\nu}}$, let $O_{\alpha_{\beta}}$ be the first term of (1) such that $\overline{O}_{\alpha} \ni p_{\beta}$. Since φ_1 is irreducible, α_{β} ($\beta < \omega_{\mu}$) is defined and $\{\alpha_{\beta}\}$ is cofinal with $\{\alpha \mid \alpha < \omega_{\mu}\}$. Therefore $\psi = \{O_{\alpha_{\beta}} \mid \beta < \omega_{\mu}\}$ is a normal covering of power \mathfrak{H}_{μ} .

If an open covering \mathcal{P} is locally finite (or star finite), then $\overline{\mathcal{P}}$ consisting of the closures of all elements of \mathcal{P} is locally finite (or star finite) and the union of the closures of some elements of \mathcal{P} is closed.

¹⁾ For the usual concept of reducibility, see E. W. Chittenden [1].

K. Iséki

Therefore as each element p_{α} of an associated set of a normal locally finite covering, we can choice a family of disjoint open sets $G_{\alpha_{\beta}}$ ($\beta < \omega_{\mu}$). If S is regular, we can take the family $G_{\alpha_{\beta}}$ ($\beta < \omega_{\mu}$) as closure disjoint. Hence we have the following

Lemma 1. There is a closure pairwise disjoint associated open set family for any normal locally finite (or star finite) open covering in a regular space.

Therefore, if S is regular, we shall use such an associated open set family stated in Lemma 1.

Let $\{O_n \mid n=1, 2, \dots\}$ be any normal open covering consisting of countable members in a regular space, then we can take a closure disjoint associated open set family. Therefore we have the following

Lemma 2. There is a closure disjoint associated open set family for any countable normal open covering in a regular space.

We shall give some propositions on a weakly compact regular space by using Lemmas 1 and 2. Such a concept was introduced by S. Mardešić and P. Papić [11]. Any topological space is said to be *weakly compact*, if for every family of disjoint open sets $\{O_{\alpha}\}$, $\lim_{\alpha \to \infty} O_{\alpha} \neq \phi$ in a topological sense. S. Mardešić and P. Papić [11], the present writer [3-7] and S. Kasahara [8] studied such a weakly compact regular space.²⁾

For any weakly compact regular space S, let $\{O_{\alpha}\}$ be a locally finite open covering of S, then, by Theorem 1, we can find a normal subfamily of it. By Lemma 1, we can take an associated open sets family φ . If φ has infinitely many members, by the weakly compactness, some member of φ must intersect the closure of some other one of it. Therefore there is a normal subfamily having finite members. By a similar method and Lemma 2, we have the following

Theorem 2. For any regular space S the following conditions are equivalent:

1) S is weakly compact.

2) Any locally finite open covering contains an AU-covering.

3) Any countable infinite open covering contains an AU-covering, *i.e.* AU-reducible.

In a regular space, it is clear that the condition 1) or the condition 2) implies the weakly compactness (see K. Iséki [5] or S. Mardešić and P. Papić [11]).

Next, we shall consider the *classical normal family* in the sense of E. W. Chittenden [1, p. 299]. We shall take a special type in

²⁾ A few weeks ago, we received a recent volume of Bull. Amer. Math. Soc., 63/1 (1957). We found abstracts by C. Wenjen, J. D. McKnight, R. W. Bagley and E. H. Connell. They has also studied a weakly compact space. The abstracts contain some of the results which we have published in the recent volume of Proc. Japan Acad. (1957).

which the relation T means "interior to". Every locally finite open

covering φ of a space S contains a classical normal covering ψ and ψ is a locally finite covering of S. Let $\overline{\psi} = \aleph_{\mu}$ and let $\{p_{\alpha} | \alpha < \omega_{\mu}\}$ be an associated set of ψ . Suppose that

$$(2) O_1, O_2, \cdots, O_{\alpha}, \cdots (\alpha < \omega_{\mu})$$

is a well-ordered series of ψ with the associated set $\{p_{\alpha} \mid \alpha < \omega_{\mu}\}$. Since ψ is locally finite, there is a neighbourhood of p_1 meeting an only finite members of (2). Therefore, there is a neighbourhood U_1 of p_1 not containing p_{α} ($\alpha \neq 1$). If S is regular, we can find an open set V_1 such that $p_1 \in V_1 \subseteq U_1$ and the open set V_1 does not contain p_{α} ($\alpha \neq 1$). For the point p_2 , we take a neighbourhood U_2 of p_2 not meeting \overline{V}_1 and not containing p_{lpha} ($lpha \neq 2$) and $U_2 \subset Q_2$. By the regularity, we can find an open set V_2 such that $p_2 \in V_2 \subseteq U_2$. In general, suppose that $\{\nu_{\beta} \mid \beta < \alpha\}$ is defined, we shall define V_{α} as follows: Since the family $\{V_{\beta} \mid \beta < \alpha\}$ is locally finite, $\overline{\bigcup_{\beta < \alpha} V_{\beta}} = \bigcup_{\beta < \alpha} \overline{V}_{\beta}$ and $p_{\alpha} \in \overline{V}_{\beta}$ $(\beta < \alpha)$. Hence we take a neighbourhood U_a of p_a such that it does not meet $\bigcup_{eta < lpha} \overline{V}_{eta}$ and is contained in O_{lpha} and does not contain p_{γ} ($\gamma \ne lpha$). Take an open set V_{α} such that $p_{\alpha} \in V_{\alpha} \subset U_{\alpha}$. V_{α} is a required open set. Therefore, we have a well-ordered open sets V_{α} of type ω_{μ} and this is a closure disjoint set family. Therefore, with Theorem 2, we have the following

Theorem 3. A regular space is weakly compact if and only if every locally finite open covering contains a finite subcovering.

Theorem 3 is also found in S. Kasahara [8].

Let $\{F_a\}$ be a given family of closed sets with finite intersection property in a compact space S. If, for some open set U, $\bigcap_a F_a \subset U$, then we have

$$\bigcup (S - F_a) \supset S - U$$

and since S-U is closed and S is compact, there are finite set of indices $\alpha_1, \dots, \alpha_n$ such that

$$\bigcup_{i=1}^n (S-F_{\alpha_i}) \supset S-U.$$

Therefore we have $\bigcap_{i=1}^{n} F_{\alpha_i} \subset U$. Conversely, let $\{F_{\alpha}\}$ be a family of closed sets with finite intersection property. If $\bigcap_{\alpha} F_{\alpha} = \phi$, then since empty set is open, there are finite set of indices $\alpha_1, \dots, \alpha_n$ such that

$$\bigcap_{i=1}^{n}F_{a_{i}}=\phi$$

Therefore this leads to a contradiction. Hence we have the following

No. 7]

Proposition 1. A topological space is compact, if and only if, for every family of closed sets F_a with finite intersection property such that $\bigcap_{a} F_a \subset U$, there is a finite set of indices $\alpha_1, \dots, \alpha_n$ such that $\bigcap_{a=1}^{n} F_{a_i} \subset U$, where U is open set.

By a similar method, we can prove the following

Proposition 2. A topological space is countably compact, if and only if, for every decreasing sequence of closed sets F_n , $\bigcap F_n \subset U$ implies $F_{n_0} \subset U$ for some n_0 , where U is open.

To formulate such propositions to a weakly compact regular space, we shall use regularly open sets (for the definition and its related theorems, see C. Kuratowski [9]). Then we have the following

Theorem 4. A necessary and sufficient condition that a regular space S be weakly compact is that for any regularly open set U containing the intersection of a decreasing sequence of closed sets F_n , there is a closed set F_{n_0} such that the interior of F_{n_0} is contained in U.

Proof. Let S be a weakly compact regular space. Then, $\bigcap_{n=1}^{\infty} F_n \subset U$ implies $\bigcup_{n=1}^{\infty} (S-F_n) \supset S-U$ and since U is regularly open, S-U is regularly closed. Hence S-U is the closure of some open set and $\{S-F_n\}$ $(n=1,2,\cdots)$ is an open covering of S-U. By Theorem 4 of my paper [6], S-U is weakly compact. Hence there is a closed F_{n_0} such that $\overline{S-F_{n_0}} \supset S-U$. Hence $\operatorname{Int} F_{n_0} = S - \overline{S-F_{n_0}} \subset U$, which completes the necessity. To prove the converse, let $\{F_n\}$ be a decreasing sequence of closed sets with non-empty interiors, suppose that $\bigcap_{n=1}^{\infty} F_n = \phi$. The empty set is regular open, so we have $\operatorname{Int} F_{n_0} = \phi$ for some n_0 by the hypothesis. Hence $\bigcap_{n=1}^{\infty} F_n$ is non-empty set. Therefore, by Theorem 2 of my paper [6], S is weakly compact.

The closure of an open set in an absolute closed Hausdorff space is absolute closed (see M. Katětov [10]). Therefore, for an absolute closed Hausdorff space, we have the following

Theorem 5. A Hausdorff space is absolute closed if and only if, for every transfinite decreasing sequence of closed sets F_a with nonempty interiors and a regularly open set U, $\bigcap_a F_a \subset U$ implies Int $F_{\alpha_0} \subset U$ for some α_{0*}

References

- E. W. Chittenden: On general topology and the relation of the properties of the class of all continuous functions to the properties of space, Trans. Amer. Math. Soc., **31**, 290-321 (1929).
- [2] K. Iséki and S. Kasahara: On pseudo-compact and countably compact spaces, Proc. Japan Acad., 33, 100-102 (1957).

No. 7]

- [3] K. Iséki: A remark on countably compact normal space, Proc. Japan Acad., 33, 131-133 (1957).
- [4] K. Iséki: A characterisation of countably compact normal space by AU-covering, Proc. Japan Acad., 33, 181 (1957).
- [5] K. Iséki: On weakly compact topological spaces, Proc. Japan Acad., 33, 182 (1957).
- [6] K. Iséki: On weakly compact regular spaces. I, Proc. Japan Acad., 33, 252– 254 (1957).
- [7] K. Iséki: On weakly compact and countably compact topological spaces, Proc. Japan Acad., 33, 323–324 (1957).
- [8] S. Kasahara: On weakly compact regular spaces. II, Proc. Japan Acad., 33, 255-259 (1957).
- [9] C. Kuratowski: Topologie, I, 3rd edition, Warszawa (1952).
- [10] M. Katetov: Über H-abgeschlossene und bikompakte Räume, Cas. Mat. Fys., 69, 36-49 (1940).
- [11] S. Mardešić et P. Papić: Sur les espaces dont toute transformation réelle continue est bornée, Glasnik Mat.-Fiz. i Astr., 10, 225-232 (1955).