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128. On Non-linear Partial Differential Equations
of Parabolic Types. 1

By Haruo MURAKAMI
Kobe University
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1957)

Introduction. In this paper we shall consider the following non-
linear partial differential equations of parabolic types:
0*u/ox® —ou oy = f(x, y, u)
0*u/oxt—oufoy = f(x, ¥, u, 0,u),
0*u/ox*— oufoy = f (x, ¥, u, 0,4, 0,u).”

Our main aim is to solve the first boundary value problem of the
first equation by so-called Perron’s method which was originally used
by O. Perron to solve the Dirichlet problem for Laplace’s equation®
and later used by W. Sternberg for the equation of heat conduction.®
Recently, Prof. T. Sato modified this method and solved the Dirichlet
problem for the non-linear equation of elliptic type.” In his papers,
however, as an inevitable consequence of the method used there and
of the non-linearity of the equation, he had to extend the meaning of
the Laplacian operator. To solve our problem following Satd’s idea,
we must also extend the parabolic differential operator 92/ox®—d/oy
to a generalized heat operator []. This generalization is shown in §1.
Thus, the equations considered in this paper are of the following types:

(EI) Du=f(x, Y, u)r
(E2) Du’_‘f(x! yy u’ axu)’
(E8) []u:f(w, y’ u’ axu) ay’“’)*

In 81, after the definition of generalized heat operator [ ], we
give some notations and definitions needed in the sequel. In §2 we
state and prove some comparison theorems. Theorem 2.7 and its
corollaries play important roles later. In §3 we give a uniqueness
condition. In §4 we give some existence theorems which show the
existence of solutions under some restricted conditions.” Harnack’s first

1) We use the notations d,» and d,u for du/dx and 6u/dy respectively.

2) O. Perron: Eine neue Behandlung der ersten Randwertaufgaben fiir Aau=0,
Math. Zeitschr., 18 (1923).

3) W. Sternberg: Ueber die Gleichung der Warmeleitung, Math. Ann., 101 (1929).

4) T. Satd: Sur D’équations aux dérivées partielles az=f(x,y, 2, p, q), Comp.
Math., 12 (1954) and Sur 1’équation aux dérivées partielles az=f(x,y, 2, p,q) II (to
appear). See also M. Hukuhara and T. Satd: Theory of Differential Equations (in
Japanese), Kyoritu Publ. Co. Ltd., Tokyo (1957), cited as Hukuhara-Sato.

5) In his paper which was sent to Prof. T. Sato recently, Prof. B. Pini also proves
similar theorems in §§2,3 and 4 of the present paper independently. Therefore we shall
omit the details of the proofs there. See B. Pini: Sul primo problema di valori al
contorno per 1’equazione parabolica non lineare del secondo ordine, Rend. del Sem. Mat.
d. Universitd di Padova (1957), cited as B. Pini [1].
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and second theorems about harmonic functions are extended to our
case in §5. We introduce quasi-superior and quasi-inferior function
in 86, @s- and Ps;-functions in §7. After giving a global existence
theorem in §8, barriers are defined in §9. §10 gives the following
fundamental result: under some conditions about f(x,y,u) the equa-
tion (E,) is always solvable for the domain on which the equation of
heat conduction is solvable. In §11 we extend our results to higher
dimensional spaces.

In terminating the Introduction I am deeply grateful for this
opportunity of thanking Professor Tokui Sato who drew my attention
to problems treated in the present paper, encouraged me in innumerable
discussions and gave me many criticisms and improvements during the
preparation of this paper.

1. Preliminaries. GENERALIZED HEAT OPERATOR

Let u(x, y) be a function defined and continuous around P(x,y).
We define

Clu(e, y)= hm 1/2 f {u(x+1/2 r sin 61/ log cosec? §, y—7* sin®6)

——u(ac, )} cos 81/ log cosec? 4 d#,

Clu(e, y)=lim 12_/'7?37'2 f * {w(z+1/2 r sin 6/ Tog cosec® §, y—r?sin® §)
r—->+0 T
)
—u(z, y)} cos 81/ log cosec? § dé.
If Clwx, y) and Clul, y) coincide, it is denoted ?
by Dz, v). R

This operator [ | has the following properties:
)% If u(x, y) belongs to the class C* with
respect to x and to the class C' with respect to
Y, then
Dulx, y)=0*u/ox*—ou/dy. {E=w+ NS sin 0 VIog copocE b
ii) If u,(x, y) converge uniformly to w(x, y) =y -risingo
n a domain D and Eun(x, Y), gun(x, y) also converge uniformly in
D to the same function %u(x, y), then

Dlu(z, y)=lm D, (@, y)=lim Du.(@, )=, v).
iii) If g(x, y) is continuous and integrable in a domain D, then

O (”E{/LF' f [ U, y; €, m9(§ n) d€ dn) =g(, ¥), (x, y) e D,

6) The definition of [] and the property i) are due to B. Pini. See B. Pini [1] and
his another paper: Maggioranti e minoranti delle solzioni delle equazioni paraboliche,
Ann. di Mat., 37 (1954).
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where

1 _ (=8
Uz, y; &n)={y—n exp( 4(y—n)> "=y
0 n=Y.
We call the operator [ | generalized heat operator.
NoTATIONS. Let M be a set on (x, y)-plane. We use following
notations:
Diameter of M: d=d(M)=sup {dist (P, Q); P, Qe M}.
Height of M: h=h(M)=sup {y—v'; (x, ¥), (&', y") e M}.
Width of M: w=w(M)=sup {x—2’; (2, ¥), (', y') e M}.
{(=, v); (&, y)e M, y<y,} is denoted by M,
Let f(z, y) be a function defined on a set M. We define
f(%, y)-—_— m f(Er 77)’ _f(xr y)= lim f(Er 77)

& >(:%) &>@,Y)

where (z, y)e M’ and (&, 75)e M.

DEFINITIONS AND NOTATIONS OF p-domain AND Cl-p-domain. A
point set in (z, y)-plane is called p-domain if its boundary consists of
the following four parts: upper bounding segment, say AD on the
straight line y=»b, lower bounding segment, say BC on the straight
line y=a (B and C may coincide), and two continuons curves connecting
A to B and D to C, to which we assume that these curves are repre-
sentable as x=2,(y) and x=24,(y) where 4, and 4, are one valued continu-
ous functions on a<y<b and moreover 2A,(y)<(y) on a<y<b. We
call these two curves side curves of the p-domain. If D is such a
p-domain, we denote always the upper bounding segment by S (not
including its two end points), and both side
curves together with the lower bounding segment

8
(including their end points) by C. Moreover, b4 (
we denote the interior of D by (C,S). We
denote (C,S)~S, (G, 8)~C and (C,S)~C~S =

by (G, 5], [C,S) and [C, S] respectively. In oz
this paper, we use the term “p-domain (C, S]1”
or “p-domain [C,S]”, ete, so that the word *“p-domain” does not
always mean an open set.

If the both side curves belong to the class C' and 2,(a)<2,(a), we
call the p-domain C'-p-domain and in this case we use always [
instead of C.

DEFINITIONS OF SOLUTIONS. Whenever we speak of solutions on
(C, 8] of the equations (E,), (BE;) and (E,) respectively, we assume
always that they are continuous functions satisfying these equations
in (C, S]; and moreover, for the solution of (E,) or (E;) we assume
the existence of their partial derivatives appeared in the right hand
sides of the equations respectively.

DEFINITION. Suppose that f(z,y) is a function defined on the set
E,x K, We say that f(x,y) is quasi-bounded with respect to y if
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f(x, y) is bounded on E, X K, where K is any compact set in E,.

2. Comparison theorems. We begin by proving,

THEOREM 2.1.” Let f(x,y,u, p,q) be a function defined on (x,y)
e(C, 8] and (u, p,9)€&® and let w(x,y) be a function which is continu-
ous and has 0,0(x, y) and 0,0(x, y) on (C, S]. Suppose that we have

2.1) _[_]_w(w, <[, 9, u, 0,0, ¥), 0,0, y))
Jor (x,9)e(C, S), wl(x, y)<u, (u, 0,0, y), ,0(®,y))c& and
2.1) e, v)<f(@, ¥, u, 3,0, ), q)

Sor (z,9)eS, (@, y)<u, 3,0, ¥)<q, (4, d.0(,y),q)c& If, for (x,¥)
e(C, 8] and (x,, y,)eC,
2.2) lim (w(z, y)—u(@, 4))>0,
(@, 9> (20, Y0)
them
(2.3) w(x, y)=u(®, y)
on (C, §], where u(x, y) s a solution of (E,) on (C, S].

Proor. For any ¢>0 it follows from (2.2) that there is a neigh-
bourhood U of C such that w(z, y)—u(z, y)>—c for (z,y)e(C, S1~U.
If there is a point (z,y) such that w(z, y)—u(x, ¥Y)<—e¢ in (C, S]—U,
o(x, y)—u(x, y) attains its minimum at the point (x,, %,) of (C, S1—U.
If (2, 9)e(C,S), then w(wy,y) <u(@,y:), 0,02, Y;) = 0,%(%:, Y1),
0y(%s, Y1) = 0u(%s, ¥1),  [leo(#y, ¥;) >[Ju(ay, y,). Therefore we have
_D_w(wi, Y1) = (@4, Y1, (@, Y1), 0,0(%4, Y1), 0,0(%s, ¥y)), Which contradicts

21). If (xy,y)eS, then w(®y, y.)<u(®s, ¥y), 0,0(2s, Y1) =0,u(2;, ¥y),
0,0(4, Y1) < 0,u(2s, Yy), gm(wl, yy) > u(x,, ¥;). Therefore we have

Llo(@y, y1) 2 f (@4 y1, (@ ¥1), 9.0(21, yy), 0,u(%;, yy)), Which contradicts

2.1". Q.E.D.

THEOREM 2.1°¢. Let f(%,y,u,p) be a function defined on (z,y)
€(C, 8] and (u, p)e&,” and let w(x, y) be a function which is defined
and differentiable with respect to x on (C,S]. Suppose that

Qw(wr y)< f(w; Y, U, aww(w, ’!/))

Sfor (x,y)e(C,S], o(x,y)<u, (4, 0,0(x,y))e&. Then, (2.2) implies (2.3),
where u(x,y) s a solution of (E;) on (C,S].

THEOREM 2.2. Under the same assumptions of Theorem 2.1 or
Theorem 2.1°*,

(2.4) lim )(w(x, Y)—u(®, ¥) >0, (x,9)e(C, S], (@ Yo) €,

(@, y)>(%4, Y
wmplies o (%, y)>u(x, y) on (C, S].
THEOREM 2.3.° Let fy(x,y,u,p) and fyx,y,u,p) be functions
defined for (x,y)e(C,S] and — oo <u, p<+co. Suppose thes
(2‘5) fl(x’ y’ uly p) < f2(w7 y; uzy p)
7) This theorem is due to T. Satd, see Hukuhara-Satd, pp. 286-287.

8) ¢ is a set in (u, p, g)-space.
9) & is a set in (u, p)-space.
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for (x,9)e(C,S], wy<uy. If u,(x,y) and uy(x,y) are continuous func-
tions on (C, S] which are differentiable with respect to x and satisfy

Dul(w’ y) S fl(xy y’ ul(x’ y)! axul(wr y))

Clua(®, ¥) = fo(®, ¥, U, ¥), 0,us(%, Y))

respectively, then lim {u,(x, y) —uy(, ¥)} >0 on C implies u,(x, y) =>u.(x, )
on (C, &].

ProOF. By the assumption that lim {u,(x, ¥)—u.(x,¥)}=>0 on C,
for any ¢>0 we can find a neighbourhood U of C such that wu,(x,y)
—uy(x,y)>—¢ on (C,S]~ U. If the set of points such that wu(x,y)
—uy(x, y)< —e is not vacuous in (C, S]— U, there is a point (x,, %,) in
(C,S] such that wu,(x,y)—us(x, y) attains its minimum at that point.
At the point (x,,y,) we have wu,(x,, ¥o) <us(%o, ¥o) and 0,u,(%q, Yo)

=0,Us(%,Yo)- Then by (2.5) we have [] (uy(%,, Yo) —U2(%o, Yo)) < L1 %s(2os Yo)
- _'_:I__uz @0 Yo) < Si(®oy Yo s (T, Yo)y 0,%1 (Toy Yo)) — S2(Toy Yor Ua(Tos Yo)s
0,%(%0,%0))<0. On the other hand, since u,(x, y)—u,(x, y) attains its
minimum at (x, %, we have E{ul(xo, Yo) — Us(Xg, Yo)} =0. These two
inequalities contradict each other. Q.E.D.

THEOREM 2.4. Under the same assumptions of Theorem 2.8, if
lim {u,(%, y)—us(®, ¥)} >0 on C, then wu(x, y)>ux(x,y) on (C, S].

REMARK. Similar theorems to Theorems 2.1, 2.1°% 2.2, 2.3 and
2.4 with changing inequality signs hold true.

THEOREM 2.5. Let [, S] be a p-domain such that there is a solu-
tion of [Ju=0 which is continuous on [C, S] and which admits any
given continuous boundary value on C. Then there is one and only
one'? solution of [Ju=—1 which is continuous on [C, S and vanishes
on C, and for such solution Y(x,y), we have
(2.6) 0<Yr(x, y)<d(d+2)/2
on [C,S], where d=d(C, S).

PRroOF. It is easily seen that {(x—x,)*—2(y—1¥,)}/4 satisfies [ Ju=1.
Let o(x, ¥) be a solution of [Ju=0 which is econtinuous on [, S] and
which admits the boundary value {(x—x,)*—2(y—¥,)}/4 on C. Then

Y(x, y)=p(®, y)— [(—,)*—2(y — y,)]/4
is a solution of [Ju=—1 which is continuous on [, S] and which
vanishes on C. Hence ¥(x, ¥)>0 by Theorem 2.1. Since ¢(%, y) admits
its maximum and minimum on C,
Y(x, y) <2 Max {[(z—=,)'—2(y—v0)]1/4; (=, y)eC}<d(d+2)/2,
where (x,, ¥,) € (C, S). Q.E.D.

THEOREM 2.6. Let Y(x,y) be the uwmique solution of [Ju=-—1
which is continuous on [.L,S] and which vanishes on L. Then
2.7 0 <V (x, y) < 2w(L, SV I(L, S)/
on [.L, S].

10) B. Pini [1] includes analogous theoremé to our Theorems 2.1%s, 2.2 and 2.3.
11) Uniqueness is shown in the next section.

and
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ProOF. Let G(x,y; &,7) be Green’s function for the equation of
heat conduction on [.[, S]. Then we have

1
Gz, y; &, )| < ———mu—, <.
|G, y; &, )| V= " Y

Therefore,

|\lr(w,y)|=\ff G(w,y;&,n)dédo))

(L8]
1 } 1
< 1 1 g dn‘
Vil s VY
< L oV T D) (L S). Q.E.D.
Vo

THEOREM 2.7. Let (C,S] be a p-domain which satisfies the condi-
tion im Theorem 2.5, and let f(x,y,u,p), F(x,y,u, p) be functions
defined for (x,y)e(C, S], —c <u, p<-+ oo and suppose that

>0 >0
(2.8) f(x, y, u, p) { =0 u=0
<0 u<0

| F'(%, ¥, u, p) | <M.
If Cu=f(z,y,u,d,u)+F(x, y,u,d,u) has a solution w(x,y) which is
continuous on [C, S| and which vanishes on C, then the solution satisfies
2.9) |z, ) | < M (a, )
on [C, 8], where ¥(x,y) is the function given in Theorem 2.5.
Proor. Let v(z, y)=u(x, y)— M (x, y), where M’ is any positive
constant>M. Then, v(x, y) is a solution of
Ov=Ju—M’
= f(x, ¥, w, 0,u)+F(x, y, u, 0,u)+ M’
=f(x,y, v+ MV, 0,v+M'3, V%)
+F(x,y,v+M'y, 0,0+Mo)+M'.
Since ¥ >0, by the assumption (2.8), we have
S, y,v+M, 0, v+MoN)+F(x,y,v+My, 0,0+ Mo Nv)+ M >0
for v>0. Since v(x, ¥) vanishes on (, by Theorem 2.3 we have v(x, ¥)<0
on (C,S], ie.
u(z, y) < M'Y(x, y).
Similarly, we have — M"Y (x, y)<u(x,y). Thus we have
e, ) <MY, v).
Since M’ is any constant greater than M, we have

| u(, y) | < M(x, y). Q.E.D.
COROLLARY 1. Under the same assumptions in Theorem 2.7, we have
(2.10) | w(z, v) | < Md(d+2)/2.

COROLLARY 2. Moreover, if the domain is the C*-p-domain [.L, S]
we have

(2.11) | u(z, y) | <2Mw(L, SV ’(L, S)/.



