636 [Vol. 33,

151. Note on Free Products

By Tsuyoshi Fujiwara

Department of Mathematics, Yamaguchi University (Comm. by K. Shoda, M.J.A., Dec. 12, 1957)

In the notes [1] and [2], we have studied the necessary and sufficient condition for the existence of the free algebraic systems, and the other results. In this note, a free P-product which contains, as the special case, the free A-product of A-algebraic systems will be defined in the similar way as the free A-product has been defined by K. Shoda [3]. And we shall show a necessary and sufficient condition that a free P-product of P-algebraic systems $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is an extension of the P-algebraic systems $\mathfrak{A}_1, \dots, \mathfrak{A}_n$.

Let V be a system of single-valued compositions—hereafter every algebraic system and every composition-identity will be considered with respect to V. Let $A(x_1, \dots, x_r)$ and $B(x_1, \dots, x_r)$ be two sets of composition-identities of variables x_1, \dots, x_r , and let \mathfrak{A} be an algebraic system. If the elements a_1, \dots, a_r in $\mathfrak A$ satisfy all the compositionidentities of $A(x_1, \dots, x_r)$, we say that the elements a_1, \dots, a_r satisfy $A(x_1,\dots,x_r)$, and denote it by $A[a_1,\dots,a_r]$. An algebraic system \mathfrak{A} is said to satisfy an implication $A(x_1, \dots, x_r) \Longrightarrow B(x_1, \dots, x_r)$, when any elements a_1, \dots, a_r in $\mathfrak A$ satisfy the following condition: If $A[a_1, \dots, a_r]$ a_r], then $B[a_1, \dots, a_r]$. Now let P be a family of implications $A_{\kappa}(x_1, \dots, x_r)$ $\cdots, x_{r_{\kappa}} \Rightarrow B_{\kappa}(x_1, \cdots, x_{r_{\kappa}})$, and let $\{a_{\lambda} \mid \lambda \in L\}$ be a system of generators. Then we can define P-algebraic systems generated by the system $\{a_{\lambda} \mid \lambda \in L\}$ of generators. Moreover, by Theorem 3 in [1], there exists a free P-algebraic system $F(\{a_{\lambda} \mid \lambda \in L\}, P, R)$ with any set R of relations, since the implication $A_{\kappa}(x_1,\dots,x_{r_{\kappa}}) \Longrightarrow B_{\kappa}(x_1,\dots,x_{r_{\kappa}})$ can be considered as a set of implications in the sense of the note $\lceil 1 \rceil$.

Let $\mathfrak A$ and $\mathfrak B$ be any two P-algebraic systems. Then it is clear from Theorem 1 in [1] that $\mathfrak A$ and $\mathfrak B$ can be denoted by $F(\{a_\lambda \mid \lambda \in L\}, P, R)$ and $F(\{b_\mu \mid \mu \in M\}, P, S)$ respectively. The P-algebraic system $F(\{a_\lambda \mid \lambda \in L\} \cup \{b_\mu \mid \mu \in M\}, P, R \cup S)$ is called a free P-product of $\mathfrak A$ and $\mathfrak B$, and is denoted by $\mathfrak A * \mathfrak B$. Then there always exists a free P-product of any two P-algebraic systems $\mathfrak A$ and $\mathfrak B$ by Theorem 3 in [1], and it is easy to see that the free P-product $\mathfrak A * \mathfrak B$ is uniquely determined, i.e. $\mathfrak A * \mathfrak B$ does not depend on the choice of the generator systems $\{a_\lambda \mid \lambda \in L\}$ and $\{b_\mu \mid \mu \in M\}$. A free P-product of any number of P-algebraic systems $\mathfrak A_1, \dots, \mathfrak A_n$ can be similarly defined. A P-extension of a P-algebraic system $\mathfrak A$ will always mean a P-algebraic system which contains $\mathfrak A$ as a subsystem.

Theorem 1. Let $\mathfrak A$ and $\mathfrak B$ be two P-algebraic systems. Then, in order that $\mathfrak A$ is contained in the free P-product of $\mathfrak A$ and $\mathfrak B$, it is necessary and sufficient that there exists a P-extension $\mathfrak A^*$ of $\mathfrak A$ such that a homomorphism of $\mathfrak B$ into $\mathfrak A^*$ exists.

Proof. By Theorem 1 in [1], $\mathfrak A$ and $\mathfrak B$ can be denoted by $F(\{a_\lambda \mid \lambda \in L\}, P, R)$ and $F(\{b_\mu \mid \mu \in M\}, P, S)$ respectively. Now suppose that $\mathfrak A$ is contained in the free P-product $\mathfrak A * \mathfrak B = F(\{a_\lambda \mid \lambda \in L\} \smile \{b_\mu \mid \mu \in M\}, P, R \smile S)$. Then, a subsystem $\mathfrak B'$ of $\mathfrak A * \mathfrak B$ which is generated by the set $\{b_\mu \mid \mu \in M\}$ can be denoted by $F(\{b_\mu \mid \mu \in M_J, P, S')$ such that S' contains S. Hence $\mathfrak B' = F(\{b_\mu \mid \mu \in M\}, P, S')$ is homomorphic to $\mathfrak B = F(\{b_\mu \mid \mu \in M\}, P, S)$ by Theorem 2 in [1]. Therefore, if we put $\mathfrak A^* = \mathfrak A * \mathfrak B$, then there exists a homomorphism of $\mathfrak B$ into $\mathfrak A^*$. This completes the proof of the necessity. In the following, we shall prove the sufficiency. Suppose that there exists a P-extension $\mathfrak A^* = F(\{a_\nu^* \mid \nu \in N\}, P, R^*)$ of $\mathfrak A$ such that a homomorphism φ of $\mathfrak B$ into $\mathfrak A^*$ exists. Then we have

Hence $\mathfrak{A}^* * \mathfrak{B}$ contains \mathfrak{A}^* , and hence $\mathfrak{A}^* * \mathfrak{B}$ contains \mathfrak{A} . Now let \mathfrak{C} be the subsystem of $\mathfrak{A}^* * \mathfrak{B}$ which is generated by the set $\{a_{\lambda} \mid \lambda \in L\} \smile \{b_{\mu} \mid \mu \in M\}$. Then \mathfrak{A} is contained in \mathfrak{C} , and the subsystem \mathfrak{C} can be denoted by $F(\{a_{\lambda} \mid \lambda \in L\} \smile \{b_{\mu} \mid \mu \in M\}, P, T)$ such that T contains R and S. Therefore we have

$$\mathfrak{A} * \mathfrak{B} = F(\{a_{\lambda} \mid \lambda \in L\} \smile \{b_{\mu} \mid \mu \in M\}, P, R \smile S)$$

$$\Rightarrow F(\{a_{\lambda} \mid \lambda \in L\} \smile \{b_{\mu} \mid \mu \in M\}, P, T) = \mathfrak{G} \supseteq \mathfrak{A}.$$

Hence $\mathfrak{A}*\mathfrak{B}$ contains \mathfrak{A} . This completes the proof.

The following two corollaries can be easily obtained.

Corollary 1. A free P-product of any P-algebraic system \mathfrak{A} and a free P-algebraic system $F(\{x\}, P, \phi)$ is a P-extension of \mathfrak{A} .

Corollary 2. Let $\mathfrak A$ and $\mathfrak B$ be two P-algebraic systems. If $\mathfrak A$ contains a one-element subsystem, then $\mathfrak A$ is contained in the free P-product of $\mathfrak A$ and $\mathfrak B$.

A family P of implications $A_{\kappa}(x_1,\dots,x_{r_{\kappa}}) \Rightarrow B_{\kappa}(x_1,\dots,x_{r_{\kappa}})$ is said to be regular, if, for any P-algebraic system \mathfrak{A} , there exists a P-extension of \mathfrak{A} which contains a one-element subsystem.

Theorem 2. In order that a free P-product of any P-algebraic systems $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is a P-extension of all $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, it is necessary and sufficient that the family P is regular.

Proof. It is clear that there exists a one-element P-algebraic system \mathfrak{C} . If a free P-product of any P-algebraic systems $\mathfrak{A}_1, \dots, \mathfrak{A}_n$ is a P-extension of all $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, then a free P-product of any P-algebraic system \mathfrak{A} and the one-element P-algebraic system \mathfrak{C} is a

P-extension of both $\mathfrak A$ and $\mathfrak E$, i.e. the family P is regular. This completes the proof of the necessity. Hereafter we shall prove the sufficiency. Now suppose that the family P is regular. Then any P-algebraic system $\mathfrak A_i$ is contained in a P-algebraic system $\mathfrak A_i^*$ with its one-element subsystem $\mathfrak E_i$. Since $\mathfrak E_i$ is clearly homomorphic to any P-algebraic system, it is clear from Theorem 1 that the free P-product $\mathfrak A_i * (\mathfrak A_1 * \cdots * \mathfrak A_{i-1} * \mathfrak A_{i+1} * \cdots * \mathfrak A_n)$ is a P-extension of $\mathfrak A_i$. Hence the free P-product $\mathfrak A_1 * \cdots * \mathfrak A_{i-1} * \mathfrak A_{i+1} * \cdots * \mathfrak A_n$. Therefore the free P-product $\mathfrak A_1 * \cdots * \mathfrak A_n$ is a P-extension of all $\mathfrak A_1, \cdots, \mathfrak A_n$. This completes the proof.

References

- [1] T. Fujiwara: Note on free algebraic systems, Proc. Japan Acad., 32 (1956).
- [2] T. Fujiwara: Supplementary note on free algebraic systems, Proc. Japan Acad., 33 (1957).
- [3] K. Shoda: Allgemeine Algebra, Osaka Math. J., 1 (1949).