92 [Vol. 34,

21. Some Properties of (n-1)-Manifolds in n-Space

By Junzo Tao

Department of Mathematics, Osaka University (Comm. by K. Kunugi, M.J.A., Feb. 12, 1958)

In this note we shall give a brief account of some properties of a polyhedral (n-1)-manifold in the n-dimensional Euclidean space R^n , that is, of a triangulable (n-1)-manifold P^{n-1} rectilinearly imbedded in R^n . Theorems 1, 2, 3, 4 relate to the differentiable approximations of P^{n-1} in R^n and Theorems 5, 6 relate to the curvatura integra of P^{n-1} in R^n . Full details will appear in Osaka Mathematical Journal.

1. Let S be a point set in some Euclidean space R^n . A k-plane H^k $(k \ge 1)$ in R^n will be called transversal to S if there exists a positive number ε such that a line through any two points of S makes an angle greater than ε with H^k . A k-plane $H^k(p)$ through a point p of S will be called transversal to S at p if $H^k(p)$ is transversal to some neighbourhood of p on S.

Let M^m be a topological manifold (with or without boundary) in some Euclidean space R^n . We shall say that M^m is in normal position in R^n if it is possible to define through each point p of M^m an (n-m)-plane $H^{n-m}(p)$ which varies continuously with p and is transversal to M^m at p. Let P^m be a polyhedral m-manifold in R^n . Then we shall say that P^m is in locally normal position in R^n if the star of any vertex on P^m is in normal position in R^n . Then we obtain the following:

Theorem 1. Any polyhedral (n-1)-manifold P^{n-1} in locally normal position in the n-dimensional Euclidean space R^n is in normal position.

Outline of the proof: Let ε be a positive number less than $\frac{1}{n}$. Let s^j be any j-simplex of P^{n-1} and let s^{n-1} be any (n-1)-simplex of P^{n-1} which belongs to the star of s^j on P^{n-1} . We choose barycentric coordinates $(u_0, u_1, \dots, u_{n-1})$ on s^{n-1} so that $u_{j+1} = \dots = u_{n-1} = 0$ at s^j . Let $N_{s^{n-1}}(s^j)$ be the set of points whose barycentric coordinates (u_0, \dots, u_{n-1}) satisfy the following:

$$\varepsilon \leq u_0, \dots, \varepsilon \leq u_j, \ 0 \leq u_{j+1} \leq \varepsilon, \dots, \ 0 \leq u_{n-1} \leq \varepsilon.$$

We shall define

$$N(s^j) = \sum\limits_{s^{n-1} \in St(s^j)} N_{s^{n-1}}(s^j)$$

where $St(s^j)$ is the star of s^j on P^{n-1} .

Thus P^{n-1} is covered by these closed (n-1)-dimensional regions $N(s^{j})$ which are disjoint from each other except eventually for common

faces. We shall define transversal lines on $N(s^{j})$ step by induction on the dimension of the simplexes of P^{n-1} .

The initial step of induction is to define transversal lines on $N(s^0)$ of any vertex s^0 of P^{n-1} . According to the hypothesis of the theorem, we may define a line $H(s^0)$ which passes through s^0 and is transversal to the star of s^0 at s^0 . Then we define a transversal line H(p) through p on $N(s^0)$ by the requirement

$$H(p) || H(s^0).$$

If transversal lines H(p) are defined on any $N(s^k)$ (k < j), the general step of induction is to extend the definition of H(p) over $N(s^j)$ where s^j is any j-simplex of P^{n-1} . Let t^j be the set of points where all the barycentric coordinates for s^j exceed ε . Then H(p) is already defined on $\overline{s^j-t^j}$ by induction.

First we shall extend the definition of H(p) over t^j . Let $L(t^j)$ be the totality of the lines through the origin of R^n parallel to some (n-1)-simplex in the star of s^j on P^{n-1} . Then $L(t^j)$, regarding as a subset of the (n-1)-dimensional projective space S^{n-1} composed of all the lines through the origin of R^n , subdivides S^{n-1} in some closed (n-1)-dimensional domains $D_i(t^j)$ which are distinct from each other save eventually for common faces. It may be shown that any line H(p) through a point p of t^j is transversal at p to $N(s^j)$ if and only if the line through the origin of R^n parallel to H(p) is a point of the interior $D'_{i_0}(t^j)$ of a fixed domain $D_{i_0}(t^j)$. Thus we obtain a mapping of the boundary of t^j into $D'_{i_0}(t^j)$. By the contractibility of $D'_{i_0}(t^j)$ we may extend this mapping from the t^j into $D'_{i_0}(t^j)$. This is nothing but the constructibility of H(p) on t^j .

Let s^{n-1} be an (n-1)-simplex in the star of s^j on P^{n-1} . Let t^{n-1} be the set of points where all barycentric coordinates for s^{n-1} exceed ε . Let t'^j be the bounding simplex of t^{n-1} parallel to t^j . Let t''^{n-j-2} be the bounding simplex of t^{n-1} opposite to t'^j . Consider any point q on t^j . Denote by $B^{n-j-1}_{s^{n-1}}(q)$ the intersection of $N_{s^{n-1}}(s^j)$ with the (n-j-1)-dimensional plane determined by q and t''^{n-j-2} , and define $B^{n-j-1}(q)$ as follows:

$$B^{n-j-1}(q) = \sum_{s^{n-1} \in St(s^j)} B^{n-j-1}_{s^{n-1}}(q)$$

where $St(s^j)$ is the star of s^j on P^{n-1} .

As q ranges over t^j , the set $B^{n-j-1}(q)$ fills out $N(s^j)$ in a one-to-one continuous way. If now q is any point of t^j and p is any point of $B^{n-j-1}(q)$, then H(p) will mean the line through p parallel to H(q). This completes the definition of H(p) on $N(s^j)$, and the theorem is proved.

In any arbitrary neighbourhood of a polyhedral m-manifold P^m in normal position in some Euclidean space, there exists, according to

S. S. Cairns [2], an analytic manifold which is homeomorphic to P^m and is an approximation to P^m . Therefore we obtain the following:

Theorem 2. Under the same condition as Theorem 1, there exists in an arbitrary neighbourhood of P^{n-1} an analytic manifold which is homeomorphic to P^{n-1} and an approximation to P^{n-1} .

Next we shall say that a topological m-manifold M^m in some Euclidean space R^n is in regular position in R^n if there exist unit vectors $v_1(p), \dots, v_{n-m}(p)$ through each point p of M^m such that $v_1(p), \dots, v_{n-m}(p)$ vary continuously with p and that the (n-m)-plane spanned by these vectors in transversal to M^m at p.

If (n-1)-manifold M^{n-1} is in normal position in the n-dimensional Euclidean space R^n , then M^{n-1} is necessarily orientable and divides R^n in two domains D_1 and D_2 . We may orient any transversal line defined on M^{n-1} in the direction from the domain D_1 to the domain D_2 . Thus we obtain the following:

Theorem 3. Any (n-1)-manifold in normal position in the n-dimensional Euclidean space is in regular position.

According to H. Whitney [4] any m-manifold M^m in regular position in the n-dimensional Euclidean space R^n may be imbedded in an (n-m)-parameter family of analytic manifolds which are homeomorphic to M^m and fill out a neighbourhood of M^m in R^n . Therefore we obtain the following:

Theorem 4. Under the same condition of Theorem 1, there exists a one parameter analytic family of manifolds M_t (|t|<1) which are homeomorphic to P^{n-1} and fill out a neighbourhood of P^{n-1} in R^n and are analytic except for at t=0.

2. Let P^{n-1} be a compact polyhedral (n-1)-manifold in regular position in the n-dimensional Euclidean space R^n . We may define through each point p of P^{n-1} a unit vector v(p) which varies continuously with p and transversal to P^{n-1} at p. As each point p of P^{n-1} corresponds to v(p), we obtain a continuous mapping φ of P^{n-1} into a unit sphere S^{n-1} . As P^{n-1} is orientable, we may define the degree of the mapping φ which is independent of v(p) defined on P^{n-1} under the conditions that v(p) varies continuously with p and is transversal to P^{n-1} at p. Then we define the curvatura integral $d(P^{n-1})$ of P^{n-1} in R^n as the degree of the mapping φ .

If M^m is an analytic manifold in some Euclidean space R^n , then, according to S. S. Cairns [1], M^m may be so triangulated into cells (σ) that the vertices of each m-cell determine a non singular m-simplex and that the totality of simplexes so determined is a polyhedral manifold P^m homeomorphic to M^m in such a way that corresponding m-cells have identical vertices and that the tangent m-plane to M^m at any point of a cell σ^m of (σ) differs arbitrarily small in its direction from

the *m*-plane of P^m . We shall call P^m a Cairns' approximation of M^m in R^n .

Let M^{n-1} be a compact analytic manifold in R^n and let P^{n-1} be a Cairns' approximation of M^{n-1} in R^n . Then constructing at any point p on P^{n-1} the line H(p) parallel to the normal line at the corresponding point of M^{n-1} , it is shown that P^{n-1} is in normal position and the curvatura integra of P^{n-1} in R^n is equal to the usual curvatura integra of M^{n-1} in R^n . Using this fact we obtain the following:

Theorem 5. If P^{n-1} is a compact polyhedral (n-1)-manifold in regular position in R^n and if M_i^{n-1} is the manifold defined in Theorem 4, then the usual curvatura integra of M_i^{n-1} $(t \neq 0)$ in R^n is equal to the curvatura integra of P^{n-1} in R^n .

Let P^{n-1} and Q^{n-1} be compact polyhedral (n-1)-manifolds in R^n . Then we may say that P^{n-1} and Q^{n-1} are congruent in R^n , if there exists an orientation preserving semi-linear homeomorphism Ψ of R^n which satisfies $\Psi(P) = Q$. Then there exists, according to V. K. A. M. Gugenheim [3], a piecewise linear homeomorphism $\Psi(p,t) = (\phi_t(p),t)$ of $P^{n-1} \times [0,1]$ into $R^{n-1} \times [0,1]$ such that $\phi_t(p)$ is a peicewise linear homeomorphism of P^{n-1} into P^{n-1} into P^{n-1} .

If P^{n-1} and Q^{n-1} are in regular position in R^n , then we may choose Φ so that $\phi_t(P^{n-1})$ is in regular position in R^n . From this fact we obtain the following:

Theorem 6. If P^{n-1} and Q^{n-1} are compact polyhedral (n-1)-manifolds in R^n and are congruent in R^n , then $d(P^{n-1})=d(Q^{n-1})$.

References

- [1] S. S. Cairns: Polyhedral approximations to regular loci, Ann. Math., 37, 409-415 (1936).
- [2] S. S. Cairns: Homeomorphisms between topological manifolds and analytic manifolds, Ann. Math., **41**, 796-808 (1940).
- [3] V. K. A. M. Gugenheim: Piecewise linear isotopy and embedding of elements and spheres (I), Proc. London Math. Soc., 3, 29-53 (1953).
- [4] H. Whitney: The imbedding of manifolds in families of analytic manifolds, Ann. Math., 37, 865-878 (1936).