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18. Quasiideals in Semirings without Zero

By Kiyoshi ISEKI
Kobe University
(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1958)

0. Steinfeld [2, 8] has introduced the notion of quasiideals in
rings, and semigroups and proved some interesting theorems. In this
paper, we shall consider and prove some theorems on quasiideals in
semirings. For fundamental concepts on a semiring and its related
subjects, we shall follow the papers by S. Bourne [1], H. S. Vandiver
and M. W. Weaver [4]. Unless otherwise stated, the word semiring
shall mean semiring without zero.

Let S be a semiring, and suppose that A is a subset of S which
is additively closed: if a,bec A, then a+bcA. A is a quasiideal if and
only if AS~SACA. Any quasiideal A is subsemiring of S, since
A*C AS~SAC A. The intersection (;‘]Am of quasiideals A, of S is

empty or a quasiideal. For, if A::[;]Auﬂpj:, then, for each a, AS~
SAC A,S~SA,C A, and we have AS~SAC A.

Lemma 1. The intersection of a right ideal and a left ideal in
a semiring s a quasiideal.

Proof. Let R be a right ideal in S, and L a left ideal in S, then
RLCRA~L and R~L is not empty. Further, we have

(R~AL)S~S(R~LYS RS~SLZRAL,
and this shows that R~L is a quasiideal.

Lemma 2. Let ¢ be a multiplicative idempotent, and L a left
iwdeal, B a right ideal in a semiring S, then eL and Re are quasiideal
and

eL=L~¢cS, Re=8S:z:~R.

Proof. By Lemma 1, it is sufficient to prove the relations sL=
L ~cS and Re=Se~R. Asitis trivial that eL. & L ~&S, we shall show
eL2DL~&S. Let a be an element of L ~cS, then we have

a = &S,
seS and aclL.
Hence, since ¢f=¢, we have
ea=¢-eS=¢eS
and this shows es=eacecL and we have L ~eSCc¢cL, similary, for right
ideal R, we have Re=S8Ss~R.

Theorem 1. The intersection of minimal right and minimal left
ideals in a semiring is a minimal quasiideal.

Proof. Let R and L be minimal right and left ideals in the semi-
ring S, and let @ be the intersection of R and L, then @ is a non-
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empty quasiideal by Lemma 1. Suppose that @ is not minimal, so
there is a quasiideal @ such that Q' =@. Then we have @ < L, and
since L is minimal, SQ'=L. Similarly, we have @ S=R. Hence Q=
L~R=8SQ ~Q'Sc @, which contradicts.
Theorem 2. Ewvery minimal quasiideal Q in a semiring S is rep-
resented as follows:
Q = Sa~asS,
where a 1s any element of Q, Sa is a minimal left ideal, and aS is
a minimal right ideal.
Proof. For an element a of Q, by Lemma 1, Sa aS is a quasi-
ideal in S, and we have
Sa~aSS SQ~QSZ Q.
Since @ is a minimal quasiideal, @ =Sa ~aS.
To prove that Sa is a minimal left ideal, suppose that L is a left
ideal such that L < Sa, then we have
SL < L < Sa.
Therefore,
SLK\GS_C_S(L/\GSZQ.
By Lemma 1, SL~aS is a quasiideal, and further, since @ is minimal,
SL~aS=@Q. On the other hand, by @ =Sa < SL, we have Sa=SQ=SL.
This shows L=Sa, and it means that Sa is a minimal left ideal.
Similarly, aS is a minimal right ideal. Therefore the proof is com-
plete.
Let @ be a minimal quasiideal in a semiring S. By Theorem 2,
for any element a of @, we have
Sa~aS = Q,
Sa*~a’S = Q.
Therefore, for an element b, there are four elements p,q,r and S in
S such that
b = pa = ag,
b = ra® = a®S.
Hence, we can find two elements z,y such that
a = xa® = a%y,
and we have xa’y=xa=ay<cSa~aS=Q. Then zaxa=xaay=xa. This
shows that xa is an idempotent in S. Let ¢ be the idempotent, then
ec@, and, by Theorem 2, we have a presentation of @Q: Se~eS=Q.
By Lemma 2, ¢Se is a quasiideal and eSe = Q, therefore eSe=@. The
idempotent ¢ is the unit element of the subsemiring @ of S. We
shall show that @ is a group on the multiplication. For an element
cae of Q, we have eSec-eac & eSe=Q. By Lemma 2, Se-cac is a quasi-
ideal in S, therefore we have &Sec-cac=eSe. This shows that the equa-
tion x eas=ebe is solvable in &Se. Similarly eSe-x=¢be is solvable.
Hence @ is a group on the multiplication, i.e. a division semiring in
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the sense of S. Bourne [1].

Conversely, suppose that a quasiideal @ in a semiring S is a divi-
sion semiring, then @ is minimal. To prove it, let @ be a quasiideal
of S such that @ =@, then QQ~QR CQR'S~SQ Q" and Q is a
quasiideal of @. Let a be an element in @', b an element in @, then
ax=>b and ya=>b are solvable in Q. Therefore bcaQ ~Qa < QQ~QQ’
= Q. This shows @=Q'. Hence @ is minimal. Therefore we have
the following fundamental

Theorem 8. If there is a minimal quasiideal Q in a semiring S:
(1) There is at least one idempotent ¢ in Q.

(2) Q=eSe.
(3) @ is a division semiring.

Corollary. A quasiideal in a semiring is minimal, if and only
if it is a division semiring.

Theorem 4. Minimal quasiideals of a semiring are all tsomorphic
together.

Proof. Let Q,, and @, be two quasiideals in a semiring S, then
Q,=¢,S¢;, Q.=¢e,Se; by Theorem 3. Let a be an element of S, then
&08, - €,5¢; & €,5¢,6,S¢, = ¢,S¢;, and &,ae,6,8¢,=¢,S¢;,. Hence, there is an
element b of S such that

&,08,8,0e, = ¢&,.

The element ¢,be,c,0e, is idempotent of &,Se,, for (&,be, - &,a8,)? =&bec,a8,
X &,be&,a8, =&,be 6,06, € 6,S¢,. Therefore ¢,xe, — &,be,6,%¢,6,08, is a map-
ping ¢ from @, to @Q,. Since Q,, Q, are division semirings, the mapping
is one-to-one. If x and y are elements of @;, we have gp(x+y)=¢p(x)
+@(y). For x and y of Q,, since Xe,-¢,y€Q and ¢ae,e,be,=¢;, we have
&,6,E,YE; —> E,D6,006,6,Y A8, = £,DE,6, X8, - €,06,6.D8,6,Y¢, - €,06,, and this shows
p(xy)=@(x)p(y). Hence ¢ is homomorphism and @; and @, are iso-
morphie, the proof is complete.
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