46. On the Singular Integrals. I

By Sumiyuki Koizumi

Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, m.J.A., April 12, 1958)

1. Introduction. Let E^{n} be an n-dimensional Euclidean space. Let $f(P)$ be a function L^{p} in $E^{n}, p \geqq 1$, and the kernel K has the form

$$
\begin{equation*}
K(P-Q)=|P-Q|^{-n} \Omega\left[(P-Q)|P-Q|^{-1}\right], \tag{1.1}
\end{equation*}
$$

where $\Omega(P)$ is a function defined on Σ and satisfies the following conditions:

$$
\begin{equation*}
\int_{\Sigma} \Omega(P) d \sigma=0, \tag{1.2}
\end{equation*}
$$

where $d \sigma$ is the area element on Σ and Σ denotes a surface of the sphere of radius 1 with center at the origin,

$$
\begin{equation*}
|\Omega(P)-\Omega(Q)| \leqq \omega(|P-Q|), \tag{1.3}
\end{equation*}
$$

and $\omega(t)$ is an increasing function such that $\omega(t) \geqq t$ and

$$
\begin{equation*}
\int_{0}^{1} \omega(t) \frac{d t}{t}=\int_{1}^{\infty} \omega\left(\frac{1}{t}\right) \frac{d t}{t}<\infty . \tag{1.4}
\end{equation*}
$$

Now we define the operation T by

$$
\begin{equation*}
T f=\tilde{f}_{\lambda}(P)=\int_{E^{n}} K_{\lambda}(P-Q) f(Q) d Q, \tag{1.5}
\end{equation*}
$$

where

$$
K_{\lambda}(P-Q)= \begin{cases}K(P-Q) & \text { if }|P-Q| \geqq 1 / \lambda, \tag{1.6}\\ 0 & \text { elsewhere },\end{cases}
$$

and $d Q$ is the volume element of E^{n}.
Then A. P. Calderón and A. Zygmund [1] (cf. also [4]) have proved the following

Theorem 1. Let $f(P)$ belong to $L^{p}, 1 \leqq p<\infty$. Then

$$
\begin{equation*}
\tilde{f}(P)=\lim _{\lambda \rightarrow \infty} \tilde{f}_{\lambda}(P) \tag{1.7}
\end{equation*}
$$

exists a.e. If $1<p<\infty$, then we have also

$$
\begin{equation*}
\left\|\tilde{f}_{\lambda}\right\|_{p} \leqq A_{p}\|f\|_{p}, \quad\|\tilde{f}\|_{p} \leqq A_{p}\|f\|_{p}, \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\tilde{f}_{*}\right\|_{p} \leqq A_{p}\|f\|_{p} \text {, where } \quad \tilde{f}_{*}(P)=\sup _{\lambda>0} \tilde{f}_{\lambda}(P) . \tag{1.10}
\end{equation*}
$$

The constant A_{p} depends on p and the kernel K only.
We can extend this theorem for the class L^{φ} such that $f(P)$ is measurable and $\varphi(|f|)$ is integrable. $\varphi(u)$ is a continuous increasing function for $u \geqq 0$ and satisfies the following conditions: $\varphi(0)=0$, and

$$
\begin{align*}
\varphi(2 u) & =O(\varphi(u)) \tag{1.11}\\
\int_{u}^{\infty} \frac{\varphi(t)}{t^{r+1}} d t & =O\left(\frac{\varphi(u)}{u^{r}}\right) \quad(1<r<\infty), \tag{1.12}\\
\int_{1}^{u} \frac{\varphi(t)}{t^{2}} d t & =O\left(\frac{\varphi(u)}{u}\right) \tag{1.13}
\end{align*}
$$

for $u \rightarrow \infty$, and

$$
\begin{gather*}
\varphi(2 u)=O(\varphi(u)) \tag{1.14}\\
\int_{u}^{1} \frac{\varphi(t)}{t^{r+1}} d t=O\left(\frac{\varphi(u)}{u^{r}}\right), \quad(1<r<\infty) \tag{1.15}\\
\int_{0}^{u} \frac{\varphi(t)}{t^{2}} d t=O\left(\frac{\varphi(u)}{u}\right) \tag{1.16}
\end{gather*}
$$

for $u \rightarrow 0$.
In particular, these conditions are satisfied if $\varphi(u)=u^{p}$ or $u^{p} \psi(u)$, $1<p<r$ and $\psi(u)$ is a slowly varying function both for $u \rightarrow 0$ and $u \rightarrow \infty$.

Then we have
Theorem 2. Let $f(P)$ belong to L^{φ} with this $\varphi(u)$. Then

$$
\begin{equation*}
\tilde{f}(P)=\lim _{\lambda \rightarrow \infty} \tilde{f_{\lambda}}(P) \tag{1.17}
\end{equation*}
$$

exists a.e. We have also

$$
\begin{gather*}
\left\|\tilde{f}_{\lambda}\right\|_{\varphi} \leqq A_{\varphi}\|f\|_{\varphi}, \quad\|\tilde{f}\|_{\varphi} \leqq A_{\varphi}\|f\|_{\varphi} \tag{1.18}\\
\lim _{\lambda \rightarrow \infty}\left\|\tilde{f}-\tilde{f_{\lambda}}\right\|_{\varphi}=0 \tag{1.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\widetilde{f}_{*}\right\|_{\varphi} \leqq A_{\varphi}\|f\|_{\varphi}, \quad \text { where } \quad \tilde{f}_{*}(P)=\sup _{\lambda>0} \widetilde{f_{\lambda}}(P) \tag{1.20}
\end{equation*}
$$

The constant A_{φ} depends on the φ and the kernel K only.
2. Interpolation of the operation. The proof of Theorem 2 depends on the interpolation of the quasi-linear operation due to J . Marcinkiewicz [2] and A. Zygmund [3]. Let R and S be two spaces -for simplicity Euclidean spaces-with non-negative and completely additive measures μ and ν respectively.

Then J. Marcinkiewicz and A. Zygmund have proved
Theorem 3. Suppose that $\mu(R)$ and $\nu(S)$ are finite, that $1 \leqq a<b$ $<\infty$ and that $h=T f$ is a quasi-linear operation simultaneously of weak types (a, a) and (b, b). Suppose also that $\varphi(u)$ is a continuous increasing function for $u \geqq 0$ and satisfies the following conditions: $\varphi(0)=0$ and

$$
\begin{gather*}
\varphi(2 u)=O(\varphi(u)) \tag{2.1}\\
\int_{u}^{\infty} \frac{\varphi(t)}{t^{b+1}} d t=O\left(\frac{\varphi(u)}{u^{b}}\right), \tag{2.2}\\
\int_{1}^{u} \frac{\varphi(t)}{t^{a+1}} d t=O\left(\frac{\varphi(u)}{u^{a}}\right), \tag{2.3}
\end{gather*}
$$

for $u \rightarrow \infty$. Then $h=T f$ is defined for every f such that $\varphi(|f|)$ is μ-integrable, and we have

$$
\begin{equation*}
\int_{S} \varphi(|h|) d \nu \leqq A \int_{R} \varphi(|f|) d \mu+B \tag{2.4}
\end{equation*}
$$

where the A, B are independent of f.
We now extend this theorem in the case where $\mu(R)$ and $\nu(S)$ are both infinite:

Theorem 4. Suppose that $\mu(R)$ and $\nu(S)$ are both infinite, and that a quasi-linear operation $h=T f$ is of weak types (a, a) and (b, b), where $1 \leqq a<b<\infty$. Suppose also that $\varphi(u)$ is a continuous increasing function for $u \geqq 0$ satisfying the conditions: $\varphi(0)=0$, (2.1), (2.2), (2.3) for $u \rightarrow \infty$ and further

$$
\begin{gather*}
\varphi(2 u)=O(\varphi(u)) \tag{2.5}\\
\int_{u}^{1} \frac{\varphi(t)}{t^{b+1}} d t=O\left(\frac{\varphi(u)}{u^{b}}\right), \tag{2.6}\\
\int_{0}^{u} \frac{\varphi(t)}{t^{a+1}} d t=O\left(\frac{\varphi(u)}{u^{a}}\right), \tag{2.7}
\end{gather*}
$$

for $u \rightarrow 0$. Then $h=T f$ is defined for every f such that $\varphi(|f|)$ is μ integrable, and we have

$$
\begin{equation*}
\int_{S} \varphi(|h|) d \nu \leqq A \int_{R} \varphi(|f|) d \mu \tag{2.8}
\end{equation*}
$$

where A is independent of f.
The existence of this theorem is indicated by A. Zygmund [3] implicitly.

Proof of Theorem 4. Let f be any μ-measurable function on R such that $\varphi(|f|)$ is μ-integrable, and let $n(y)$ be the distribution function of $|h|$, that is the ν-measure of the set $E_{y}[|h|]=\{x| | h(x) \mid>y$, $x \in S\}$. Then we have

$$
\int_{0}^{\infty} n(y) d \varphi(y) \leqq \sum_{j=-\infty}^{\infty} \eta_{j}\left\{\varphi\left(\lambda 2^{j+1}\right)-\varphi\left(\lambda 2^{j}\right)\right\}=\sum_{j=-\infty}^{\infty} \eta_{j} \delta_{j},
$$

where $\eta_{j}=n\left(\lambda 2^{j}\right), \delta_{j}=\varphi\left(\lambda 2^{j+1}\right)-\varphi\left(\lambda 2^{j}\right)$ and $\lambda=3 \kappa^{2}$.
For each fixed positive j we write

$$
f=f_{1}+f_{2}+f_{3}
$$

where

$$
\begin{array}{llll}
f_{1}=f & 1 \leqq|f|<2^{j}, & =0 & \text { elsewhere } \\
f_{2}=f & 2^{j} \leqq|f|, & =0 & \text { elsewhere } \\
f_{3}=f & 0 \leqq|f|<1, & =0 & \text { elsewhere }
\end{array}
$$

and

$$
h=T f, \quad h_{i}=T f_{i}, i=1,2,3
$$

Then we have $f_{1} \in L^{a} \cup L^{b}, f_{2} \in L^{a}, f_{3} \in L^{b}$ respectively, and $T f$ is defined. Since

$$
E_{\lambda 2 j}[|h|] \subset \bigcup_{i=1}^{3} E_{2 j}\left[\left|h_{i}\right|\right], \quad \lambda=3 \kappa^{2}(\kappa \geqq 1),
$$

we have

$$
\eta_{j}<M\left\{2^{-j b} \int_{R}\left|f_{1}\right|^{b} d \mu+2^{-j a} \int_{R}\left|f_{2}\right|^{a} d \mu+2^{-j b} \int_{R}\left|f_{3}\right|^{b} d \mu\right\}
$$

and

$$
\sum_{j=0}^{\infty} \eta_{j} \delta_{j}<M\left(S_{1}+S_{2}+S_{3}\right), \quad \text { say }
$$

Let ε_{i} be the μ-measure of the set of such points x in R that $2^{i-1} \leqq f<2^{i}(i=0, \pm 1, \pm 2, \cdots)$, then we have from (2.1) and (2.2)

$$
S_{1} \leqq A \int_{R_{2}} \varphi(|f|) d \mu, \quad R_{2}=\{x| | f(x) \mid \geqq 1, x \in R\} .
$$

Similarly from (2.1) and (2.3) we have

$$
S_{2} \leqq A \int_{R_{2}} \varphi(|f|) d \mu
$$

For S_{3}, we have by (2.2) and (2.6)

$$
S_{3} \leqq \int_{R_{1}}|f|^{b} d \mu \int_{1}^{\infty} \frac{\varphi(t)}{t^{b+1}} d t<A \int_{R_{1}} \varphi(|f|) d \mu, R_{1}=\{x| | f(x) \mid<1, x \in R\}
$$

Next for negative j, we write

$$
f=f_{4}+f_{5}+f_{6}
$$

where

$$
\begin{array}{llll}
f_{4}=f & 2^{j} \leqq|f|<1, & =0 & \text { elsewhere } \\
f_{5}=f & 0 \leqq|f|<2^{j}, & =0 & \text { elsewhere } \\
f_{6}=f & 1 \leqq|f|, & =0 & \text { elsewhere }
\end{array}
$$

and

$$
h=T f, \quad h_{i}=T f_{i}, \quad i=4,5,6 .
$$

Then we have $f_{4} \in L^{a} \cup L^{b}, f_{5} \in L^{b}, f_{6} \in L^{a}$ respectively, and $T f$ is defined, and we have

$$
\eta_{j} \leqq M\left\{2^{-j a} \int_{R}\left|f_{4}\right|^{a} d \mu+2^{-j b} \int_{R}\left|f_{5}\right|^{b} d \mu+2^{-j a} \int_{R}\left|f_{6}\right|^{a} d \mu\right\}
$$

and

$$
\sum_{j=-\infty}^{-1} \eta_{j} \delta_{j}<M\left(S_{4}+S_{5}+S_{6}\right), \quad \text { say }
$$

And we have

$$
S_{4} \leqq A \int_{R_{1}} \varphi(|f|) d \mu
$$

by (2.5) and (2.7),

$$
S_{5} \leqq A \int_{R_{1}} \varphi(|f|) d \mu
$$

by (2.5) and (2.6),

$$
S_{6} \leqq A \int_{R}\left|f_{6}\right|^{a} d \mu \int_{0}^{1} \frac{\varphi(t)}{t^{a+1}} d t \leqq A \int_{R_{2}} \varphi(|f|) d \mu,
$$

by (2.7) and (2.3). Thus Theorem 4 is established.

3. Proof of Theorem 2

Proof of (1.17). By (1.13) and (1.15) we have

$$
\begin{array}{cc}
u \leqq A \varphi(u) & u \geqq 1 \\
u^{p} \leqq A_{1} \varphi(u) & 0 \leqq u<1 .
\end{array}
$$

And we decompose f into the sum of the f_{1} and f_{2}, where $f_{1}=f$ if $|f| \geqq 1,=0$ elsewhere and $f_{2}=f$ if $|f| \leqq 1,=0$ elsewhere. Then by (1.7), $\widetilde{f_{1}}$ and $\widetilde{f_{2}}$ exist a.e. and \tilde{f} also does a.e.

Proof of (1.18). The first part now follows immediately by the application of Theorem 4 with (1.18) and the following lemma due to A. P. Calderón and A. Zygmund [1].

Lemma 1. The operation $T f=\widetilde{f_{\lambda}}$ of (1.5) is of weak type $(1,1)$ or given an $f \geqq 0$ of $L^{p}, p \geqq 1$ and any number $y>0$, there is a sequence of non-overlapping cubes I_{k} such that

$$
y \leqq \frac{1}{\left|I_{k}\right|} \int_{I_{k}} f(P) d P \leqq 2^{n} y, \quad(k=1,2, \cdots)
$$

and $f \leqq y$ almost everywhere outside $D_{y}=\bigcup_{k} I_{k}$. Moreover $\left|D_{y}\right| \leqq \beta^{f}(y)$ and

$$
y \leqq \frac{1}{\left|D_{y}\right|} \int_{D_{y}} f(P) d P \leqq 2^{n} y
$$

And let $f \geqq 0$ belong to $L^{p}, 1 \leqq p \leqq 2$, in E^{n}, and let E_{y} be the set of points where the function (1.5) exceeds y in absolute value. Then

$$
\left|E_{y}\right| \leqq \frac{c_{1}}{y^{2}} \int_{E^{n}}[f(P)]_{y}^{2} d P+c_{2} \beta^{f}(y)
$$

where $[f(P)]_{y}$ denotes the function equal to f if $f \leqq y$ and equal to y otherwise, and c_{1} and c_{2} are constants independent of λ.

The second part follows from the first part, (1.17) and the Fatou lemma.

Proof of (1.19). This is proved by the well-known process.
Proof of (1.20). The proof runs on the line of the arguments of Theorem 1 of Chap. II of A. P. Calderón and A. Zygmund [1]. We only indicate, using the same notation,

Lemma 2. Let $N(P)$ be a function in E^{n} and suppose that

$$
|N(P)| \leqq \varphi(|P-O|)
$$

where $\varphi(x)$ is a decreasing function of x such that

$$
\int_{E^{n}} \varphi(|P-O|) d P<\infty
$$

Let $N_{1}(P)$ be equal to 1 in the sphere of volume 1 and center at O, and zero elsewhere; and let $\bar{f}(P)$ be defined by

$$
\begin{equation*}
\bar{f}(P)=\sup _{\lambda} \lambda^{n} \int_{E^{n}} N_{1}[\lambda(P-Q)]|f(Q)| d Q . \tag{3.1}
\end{equation*}
$$

Then we have

$$
\sup _{\lambda}\left|\lambda^{n} \int_{E^{n}} N[\lambda(P-Q)] f(Q) d Q\right| \leqq \bar{f}(P) \int_{E^{n}} \varphi(|P-O|) d P,
$$

and the operation $T f=\bar{f}$ is of weak type $(1,1)$ and of strong type (p, p), ($p>1$).

Now we can apply Theorem 4 to (3.1), and lemmas which we need are obtained. We cease to go into further.

References

[1] A. P. Calderón and A. Zygmund: On the existence of certain integrals, Acta Math., 88, 85-139 (1952).
[2] J. Marcinkiewicz: Sur l'interporation d'opération, C. R. Acad. Sci., Paris, 208, 1217-1273 (1939).
[3] A. Zygmund: On a theorem of Marcinkiewicz concerning interpolation of operations, Jour. Math., 35, 223-248 (1956).
[4] A. Zygmund: Hilbert transform in E^{n}, Proc. Int. Congress Math., Amsterdam, 3, 140-151 (1954).

