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Let f(x, y) be a function of two real variables. H. Hahn proved
that if 1) for any fixed x, the function f(x, y)is a continuous function
of one variable y, and 2) for any fixed y, the function f(x, y) is also
a continuous function of x, then the set of continuity points of the
function f(x, y) is dense in the plane. Our purpose is to extend
Hahn’s theorem.

Definition and notation. Let X be a topological space and M a
metric space. Suppose that f(x) is a mapping of X into M. If the
set of discontinuity points of f(x) is of the first category, then f(x)
is called a quasi-continuous mapping of X into M.

Let E be a subset of M. By $(E) we shall denote the diameter
of the set E. We set

o(f; x)= inf (f(V(x))),

where U(x)’s are neighborhoods of x.
Remark 1. Let f(x) be a mapping of X into M. In order that

f(x) be continuous at a point x0 it is necessary and sufficient that
o(f; x0)--0 holds. Hence the set of the discontinuity points of f(x)
coincides with the set [.J {x; (f; x)l/n}. It is easily seen that each

set {x; o(f; x):>l/n} is a closed set of X for every n.
Remark 2. Let f(x) be a quasi-continuous mapping of X into M.

If every open set of X is of the second category, then clearly the set
of the continuity points of f(x) is dense in X.

Theorem 1. Let X and Y be two topological spaces and M a
metric space. And let f(x, y) be a mapping of the product space X Y
into M. We assume that the following conditions are satisfied:

1) For any fixed x eX, the mapping f(x, y) is a continuous map-
ping of Y into M.

2) There exists a set H which is dense in the space Y and f(x, y)
is a continuous mapping of the space X into M for any fixed y e H.

3) Every open subset of the space X is of the second category.
4) The space Y satisfies the first axiom of countability. Then

f(x, y) is a quasi-continuous mapping of the product space X Y into
M.

Proof. The mapping f(x, y) can be regarded as a mapping f(Z)
of a single space P-X Y into M. We set
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( i A= [z; o(f; z)>__i/n}.
For the proof it is enough to show that the set An is a non-dense set
for every n (see Remark 1). Assume that for an no the set A is
not non-dense. Since A is closed (see Remark 1), the set A$o (interior
of Ao) is not empty. Hence we set
(2) G=A,oO.
As G is an open set of the product space P--X Y, there exist open
sets Uo X and V0 Y such that
a {(, y); Uo, y Vo} Uo x Vo

_ .
We select a point Yo e VoH (see condition 2) of the theorem)and let
V, V.,..., Vn,’’" be a complete system of neighborhoods of the point

Yo. Without losing the generality we may assume that each V is
contained in Vo.
(4) Vl, Y,. ., Vn,. ., yo V__.. Vo, i--1,2,....
For the sake of convenience the mapping f(x, y) will be denoted by
f(y) if f(x, y) is regarded as a mapping of the space Y into M for
any fixed x. Let e be a positive number such that

( 5 ) 7 < i/no.
We set
6 B= {x; (f(V)) <:

Since for every x e X the mapping f(y) is continuous at the point Yo,

it is easily seen that U B-X. Hence if we set

(7) D--Bn.,,Uo,

then we have clearly [J D-U0. From condition 3) of the theorem,

the open set Uo is of the second category. And so there exists a
natural number N such that the set Dx is not non-dense. Hence the
set D (interior of the closure of Dx) is not empty. Setting

(s) U- DC Uo,
it is easily seen that U=0. Now for the sake of convenience the
mapping f(x, y) will be denoted by f(x) if f(x, y) is regarded as a
mapping of the space X into M for any fixed y. Since f,o(X) is a
continuous mapping of the space X into M, there exists a neighbor-
hood U such that
9 (fo(U))< e, U1 U.
We set
(i0) w= U1 x Vx(_U Vo_ U0 Vo_ G=Ao).
For two arbitrary points (x, y)e W and (x’, y’)e W, we shall estimate
the distance of two points f(x, y) and f(x’, y’). Since f(y) is a con-
tinuous mapping of the space Y into M, there exists a point Yi such
that
(11) p(f(x, y), f(x, yl))<e, y, eH-,, V.
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On the other hand the mapping f() is a continuous mapping of the
space X into M. Hence there exists a point x such that
(12) p(f(x, Yl), f(xl, y))<e, xl U,.,Dv.
Since eD and Y0, Y e V, we have
(13) p(f(x, y), f(xl, yo))<. (See (6) and (7).)
Quite similarly we can see that there exist two points y and such
and
(14) p(f(x/, y’), f(x/, y))< e, y HA V,
(15) (f(x’, y), f(x, y))<e, x U,.,Dv,
(16) p(f(x, y), f(x, Yo))
On the other hand x, x e U, hence from (9) we have
(17) p(f(xl, Yo), f(x, Yo))
From these inequalities (11)-(17) we have at once
(18) p(f(x, y), f(x/, y’))
Thus we have o(f; (x, y))7e for any point (x, y)e W.

On the other hand WA (see (10)), and so we have (f; (x, y))
l/no. But by (5) 1/n0>7e, so that we have arrived at a contradic-
tion.

Theorem 2. Let X, Y, M, and f(x, y) be as in Theorem 1. Sup-
pose that the following conditions are satisfied:

1) There exists a subset LX which is of the first category
and f(x, y) is a quasi-continuous mapping of Y into M for any fixed
xX--L.

2) For any fixed y e Y, f(x, y) is a continuous mapping of the
space X into M.

3) Every open subset of the spaces X and Y is of the second
category.

4) The space Y satisfies the second axiom of countability. Then
the mapping f(x, y) is a quasi-continuous mapping of the product space
X Y into M.

Proof. In the proof of the above theorem, we selected a complete
system of neighborhoods of the point Y0 (see (4)). But in this theorem
we must select a countable basis of the relative subspace V0. Then
we shall find that the other arguments are quite similar to those of
the preceding theorem. So we shall omit the detailed proof.

Corollary. Let f(x, x,..., x) be a complex (real) valued function
of n variables x,, x.,..., x, where x’s are complex (real) variables.
Suppose that the following conditions are satisfied:

1) For any fixed system (x., x,..., x), the function f(x,, x.,...,
x) is a quasi-continuous function of one variable x,.

2) For any i (2in), the function f(x, x,..., x) is a con-
tinuous function of one variable x for any fixed system (x,..., x_,,
X’i 1 Xn)"
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Then the function f(x, x.,..., x) is a quasi-continuous function of n
variables.

Application 1. Let G be an abstract group. Further we assume
that G is also a complete metric space and the following condition is
satisfied:

1) lim x--x implies lim XnY--Xy and lim yx--yx.

Then we have the following:
2) lim x-x, limy-y imply limxny--xy.

Proof. To each point (x, y)e G G we correspond a point f(x, y)
=xyeG. Then it is easily seen that the conditions 1), 2), 3), and 4)
of Theorem 1 are all satisfied. (In this case X= Y=M--G.) Hence
by Theorem 1, there exists a continuity point (x0, Y0) of the mapping
f(x, y)-xy. (Notice that the product space G G is of the second
category.) Suppose that lim x=x and lim y-y. From condition 1)

we have limxox-.x-XoX-.X-Xo and limy.y-yo-y.y-yo-Yo. Since

the point (x0, Y0) is a continuity point of the mapping f(x, y), we have
limxox-x..y,y-yo-XoYo. From this and condition 1) we have

lim xy-lim xxS- XoX- XnYY- Yo YJY XXj XoYo YS-Y xy.

Application 2. Let E be a space of type (F) (see S. Banach:
Thorie des operations linaires, p. 35). If lim= and limx-x,

then we have lim ,nX--,X.

Proof. Let R be the one-dimensional euclidean space and RE
the procluct sapce of R and E. To each point (, x)eRE we cor-
respond a point x E. Then we have a mapping f(,, x)--,x of the
product space RE into E. It is easily seen that the conditions 1)-4)
of Theorem 1 are all. satisfied. Hence by Theorem 1 our assertion is
proved quite similarly as in the above Application 1.


