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62. Motion of the Ninth Satellite of Jupiter

By Gen-ichiro HoORI
Department of Astronomy, University of Tokyo
(Comm. by Y. HAGIHARA, M.J.A., May 13, 1958)

1. Introduction. In a preceding paper” we have calculated an
intermediate orbit of the ninth satellite of Jupiter, J-IX. The present
work is its continuation and contains the calculation of a general
orbit of J-IX, together with the method and the results of comparison
between the calculated orbit and the observations and, at the same
time, the determination of the values of angular constants of inte-
gration. The calculation of the general orbit is generally based on the
theory of E. W. Brown and D. Brouwer.” Some devices are attempted,
however, in the details of computation.

The comparison with observations undertaken in the present work
is rather of a preliminary character. The results, however, appear
to indicate that the theory of Brown-Brouwer is probably available
for explaining the motion of J-IX, one of the most complicated motions
in the solar system, and that the numerical values of the mean elements
of J-IX deduced from observations of S. B. Nicholson® are correct
in the range of accuracy. In order to verify the availability of the
theory and to determine the numerical values of the mean elements
to a higher degree of accuracy, it is necessary to go into details and
to make a comparison referred not to the perturbations of the elements
as in the present work, but directly to the space coordinates of J-IX.
Only a brief summary of this work is given here. A more detailed
description will be found in our thesis to be published shortly.

2. Equations of variations; definitions of perturbations. The
general orbit is obtained by adding to the intermediate orbit such ad-
ditional parts as depend on the inclination (6-terms), the first power
of the ratio of the parallaxes (parallactic terms), and the first power
of the eccentricity of Jupiter (¢’-terms).

The calculation of the additional parts is carried out by the use
of the equations of variations. Such equations are easily derived
from the original equations of motion by neglecting the squares and
the products of the variations of the variables:

D8Q=8,Q" + Q8@+ QudU+Q8(v—1"),
[(D*+(1—o})]8u=38,U"+ UgsQ+ Uy’ Dé@+ Uy D*8Q+ Usdu+ U/S(v—v"),
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where Q=Inq, U=uq %, ngl—;e-, Z=D"<Fo“ gg), and & denotes the
u 0
increments (variations) due to an addition §,R to R, or 8T to T.

For the variables contained in 8,q’, @}, etc., we substitute their
values obtained in the intermediate orbit. These values are denoted
by the suffix zero. The coefficients of 8@, 8u, etc. are functions of
the intermediate orbit only and of the form 3)Ag: (265+14l), while
8,q’, 8,U’, ete., containing 8,7, are of different forms according as the
form of 8,T consisting of the #-terms, or parallactic terms, or ¢-terms.
8@, 8u, 8I'/T",, and §(v—v') are obtained from the first four of the
preceding equations by successive approximations, and then &v, &v
are separated by the fifth and the sixth equations. Finally 8¢ is
obtained from the last equation. In the case of the §-terms, however,
this equation for 86 is incomplete in accuracy. This case will be
treated in Sec. 4. A larger part of the computation can be decomposed
to such operations as Q)X 8Q, that is, to the products of two Fourier
series.

3. The disturbing function. With our definition of T and, U,

the disturbing function can be written, by omitting the term 1:,—,

e 2 (S5 Lt (-39

with S=<1—%F> cos (v—v')+EF cos (v+v'—26).

By developing S* and S3, we obtain
T=T+To+To=To+Te+T.+ T,],

where T—-——U‘ —E’—L{<~1——F+—1—F2>+(l—ll’>2cos (21)—2’0’)},
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and T, is that part of T, which has ¢’ as a factor when T, is developed
in powers of €. (T, corresponds to the disturbing function used in
obtaining the intermediate orbit.) The perturbations due to Ty, Ty, T,
of the disturbing function are the 0-terms, the parallactic terms and
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the e¢’-terms, respectively.

4. The O-terms. In this case 8,¢’, 5,U’, 8;¢', and accordingly 8¢,

8U, ete., are of the form

SMASE (2F+285+14l), j=0, =1,---, =4; =0, =1,.-., =8,
where the new argument 2F' is defined as the value of 2v,—26, with-
out its periodic terms.

The multiplication of two series, one with the arguments 28514l
and the other 2F+2£5+1l, is carried out by the help of a “product-
table”. In this table, for example, (1,3)x(—1,1)=—(0,4), (—2, —2)
stands for

2(%) sin (26 +81) X b sin (2F—26+1)

=(%) b{— cos (2F+41)+cos (2F — 45 —2D)}.

The difficulty of slow convergency in our successive approximations
is avoided by adding unknown parameters to the coefficients of the
series 5@, 8U, and 8(v—v') after Brown-Brouwer. In the present work
we have used 33 unknowns and obtained a set of linear equations
for their determination. This difficulty is mainly due to the presence
of small divisors, especially those connected with the argument 2F—2I,
combined with large values of some of the coefficients of 8¢, 8, ete.
in the equations of variations. We have carried out several approxi-
mations for reaching the desired accuracy 1-107° even by the use of
the device referred to.

The complete equation for 6 is

D¢9=53F(TOJr T,

so that DO=U*[k(—14+1)+k,(—1+%I") cos (2v—2v")
+ (1 —TI"){k, cos (2v—26)+k, cos (2v'—20)}
+4I'k, cos (2v+2v'—46)].

It should be remembered that, in obtaining the intermediate orbit,
we have neglected that part of the disturbing function which depends
on 6, partly owing to the fact that O(T,)~O('T,) and O(I')~0.08.
In the equation for 6, however, the contribution of T, is of the same
order as that of T, owing to the operation 9/0I", and the preceding
equation for 86 is not applicable.

In order to include higher orders of the variations, the equation
for 6 is completely integrated by the use of triple harmonic analysis:
we compute the right-hand side of the equation for 486 special
values with six values of 2F, i.e. 0°, 180°, 60°, 300°, 120°, and 240°.
After analysis and integration, the results are obtained in the form

0=const.4-6,v+3>10, ,sin (2§5+4) j=0,1,---,4;1=0, =1,---, =8,
+3>16,,,,5 sin (2F+2854-1l) =0, x1,..., =4;
+310,,.,.8in (4F 4285 +11) 1=0, =1,.-., +8,
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The effects of the squares and the products of the variations are
seen in the new series with the arguments 4F--2¢j5+41l, and also in
the new values of the secular term and the terms with the arguments
2§j+1l, 2F+25j+1l. These effects are: 0.002 in the secular term;
0.006 in the terms with the arguments 2&j+44l; 0.015 in the terms
with the arguments 2F4-2£5+4l; 0.010 in the terms with the argu-
ments 4F4-2§54-4l, where the unit of angles is radian.

5. The parallactic terms. These terms are of the form

STAE (2 +1)E+4l), §=0,12,3; i=0, =1,---, =8.
The multiplication of two series, one with the arguments 265+l and
the other with (2j+1)§+1l, is carried out effectively by the use of
double harmonic analysis, the scheme of which is easy to prepare.

A remarkable contrast to the case of J-VIII is clearly manifested
in the term with the argument £—[ in the series 8. In the case of
J-VIII, the smallness of this term has presented a curious feature.
This has been due to the fact that a fairly large value of 8,Q° was
nearly cancelled by the contribution due to Q48Q+Q%48,+Q6(v—72') in
the right-hand side of the equation for 8. But in the present case
of J-IX the former is small, so that the latter remains large.

6. The e'-terms. The ¢'-terms are expressed in the form

VAR +285+141), =0, %1,-.., =4; 1=0, =1,---, =8,
where the new argument !’ is defined as the mean motion of n't,— &'+ .
The “product-table” prepared for the computation of the -terms may
be used for carrying out the multiplication of the series.

Another approach to the solution of the ¢’-terms has been attempted
for trial. We transform the equations of variations into the corres-
ponding matrix form, that is to say, we form a matrix from the
coefficients of the terms of, say Q) so that the multiplication Q%X 8Q
is carried out as if @, be a matrix and §Q a vector. Thus the
computation of the successive approximations becomes easy to follow.
In addition, the differential or the integral operators, D or D},
[D*+(1—wo})*] Y, can be included in the coefficient-matrices; this also
means that the effects of small divisors introduced by integration
are included in the equations of variations themselves through their
coefficients. Thus the transformation to the matrix form has the
advantage in many devices in the numerical solution of the equations
of variations. Although this transformation itself calls for a fairly
lengthy work, it is worth-while for the computation of the 6-terms,
the labour of which is greatly reduced by using our matrix method.

7. Comparison with observations: determination of the angular
constants of integration. Nicholson has computed the jovicentric
rectilinear coordinates of J-IX, together with the elliptic elements
on the basis of his observations made in the intervals 1914-1918 and
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1988-1943. In the present work we have carried out the comparison
referring to the node and the inclination only, by using the observa-
tional data due to Nicholson. The accuracy aimed at in the present
work being of one degree or 0.02 radian, our results are merely of
a preliminary character. The detailed comparison should be made by
referring to the space coordinates with the accuracy of the same
order as the present theory, say 0.00001 jovicentric. In the present
theory the motion of the node is expressed in a series of 204 terms,
while we have used only 17 terms among them for our comparison.

The expression of the node or the inclination in terms of the true
longitude contains four independent parameters, which depend on three
constants of integration and one parameter defining a line fixed in
the reference plane (the orbital plane of Jupiter) from which all
angles are counted. It is noted that the observational values of the
node and the inclination are referred to the ecliptic. Then we have
framed the following scheme: to transform the independent variables
from the true longitude to the time; to transform the reference frames
from the ecliptic system to that referred to the orbital plane of
Jupiter; to establish the relation between the four parameters and the
three constants of integration; to determine the numerical values of
the parameters so that the theoretical values of the node are consistent
with observations; to determine the numerical values of the integration
constants; and finally to compute the inclination with the values of
the parameters determined in this way.

Thus we have determined the values of the four parameters, which
enable us to reduce the values of “O—C” to 1.8 degrees at most
throughout the intervals 1914-1918 and 1930-1943 for both the node
and the inclination. In addition, these values of the parameters are
found to be fairly consistent with the observations:

the present obser-

theory vation

the constant term of the node (epoch: 1942) 67°.0 70°
the constant t.e:rm of the longitude of the 319°.8 319°.
perijove (epoch: 1942)

The difference between the two values shown in the first line may
be due to the fact that Nicholson did not take into account the long-
period term of 44 year period in the procedure of separating the
constant term.

8. Discussion. From the preceding results it seems probable
that the values of “O—C” in the node or the inclination are much
reduced if we use a larger number of terms in the series of the node,
the inclination and the time. Also we see that the values of the
adopted constants which are deduced by Nicholson from his obser-
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vations and with which we started the whole computation of general
perturbations are correct in their accuracy. It is remarked, however,
that the value of the mean inclination 22°28’ replaces the value shown
in the preceding paper.”

Now we see how important the character of the #-terms especially
in the perturbations of the node and the inclinations. Without the
f-terms, the theoretical value of the mean motion of the node 3°.80/
year is too small compared with the observational values 4°.44/year
and their difference amounts to 19° for an interval of 30 years. This
discrepancy is beyond remedy. On the other hand the effects of the
second order variations in the 6-terms are:

in the mean motion of the node 3°.80/year — 4°.19/year;

in the amplitude of the long-period term with the period 44 years

6°.7 > 5°.9.

It is noticed that the difference of 19° is not remedied by the term
with amplitude 6°.7, while the difference of 7°.5 can be nearly dis-
posed of by the term with amplitude 5°.9. These effects are consider-
able for the motion of the node. We are in a similar situation in
the case of the inclination. In order to see the actual situation, we
need observations of recent years. Considering such important effects
of the #-terms, it seems necessary to adopt a certain device for
including parts of 7, into the intermediate orbit, without adding
serious complication.

In conclusion the writer wishes to express his hearty thanks to
Professor Hagihara for his suggesting this problem and for his en-
couragement, also to Professor Hirose for his valuable advice and
encouragement. The writer is also indebted to Professor Kaburaki
for his constant encouragement.
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