No. 4] 167

37. Note on the Cluster Sets of the Meromorphic Functions

By Chuji TANAKA

Mathematical Institute, Waseda University, Tokyo (Comm. by S. Suetuna, M.J.A., April 13, 1959)

Let w=f(z) be uniform and meromorphic in the arbitrary connected domain D, whose boundary is C and z_0 be the non-isolated boundary point on C. We denote the part of D and C in $|z-z_0| < r$ by D_r and C_r respectively. As usual, we define the cluster sets at z_0 as follows:

Definition 1. The interior cluster set $S_{z_0}^{(D)}$ is defined by $\bigcap_{r>0} \overline{\mathfrak{D}}_r$, where \mathfrak{D}_r is the set of values taken by f(z) in D_r .

The intersection $\bigcap_{r>0} \mathbb{D}_r$ is called the range of values $R_{z_0}^{(D)}$. The boundary cluster set $S_{z_0}^{(C)}$ is the intersection $\bigcap_{r>0} M_r$, where M_r is the closure of the union $\bigcup_{z_0 \neq z' \in C_r} S_{z'}^{(D)}$.

Definition 2. We denote by $O_{z_0}^{(D)}$ the set of inner points of $S_{z_0}^{(D)}$. K. Noshiro has proved the

Theorem [1, p. 84]. The set $R_{z_0}^{(D)}$ is everywhere dense in the open set $G=S_{z_0}^{(D)}-S_{z_0}^{(C)}$, provided that G is not empty.

In this note, we shall prove the following extension of K. Noshiro's theorem, i.e. the

Theorem. If $O_{z_0}^{(D)}$ is not empty, then $R_{z_0}^{(D)}$ contains the G_δ set $\bigcap O_m$, where O_m is the open set everywhere dense with respect to $O_{z_0}^{(D)}$.

As its corollary we get the

Corollary. If $R_{z_0}^{(D)}$ is empty, then $S_{z_0}^{(D)}$ has no inner point.

The argument of its proof is due to F. Bagemihl [2].

Proof. By a rational disk we mean an open disk whose radius is a rational number and whose center is a complex number with its real and imaginary parts both rational. The set of rational disks contained in $O_{z_0}^{(D)}$ is enumerable. Let its elements be denoted by D_1 , $D_2, \dots, D_n \dots$. According to the definition of $S_{z_0}^{(D)}$, for every natural number n, there exists a point $d_n^{(m)} \in D_n$ and a point $z_n^{(m)} \in D$ such that $f(z_n^{(m)}) = d_n^{(m)}$, $0 < |z_n^{(m)} - z_0| < 1/2m$. Hence there exists an open disk $K_n^m \subset D_n$ with $d_n^{(m)} \in K_n^{(m)}$, such that every value in K_n^m is assumed by f(z) in $D \cap C_n^m$, where C_n^m is the disk defined by $|z - z_n^{(m)}| < 1/2m$.

Put $O_m = \bigcup_n K_n^m$. It is obvious that O_m is open. O_m is everywhere dense in $O_{z_0}^{(D)}$, because if N is any neighbourhood contained in $O_{z_0}^{(D)}$, then there exists k such that $D_k \subset N$, and since $K_k^m \subset D_k \subset N$, $O_m \cap N$ is not empty.

Put $R = \bigcap_m O_m$, and suppose that $w_0 \in R$. Then $w_0 \in O_m$ $(m=1,2,\cdots)$ and hence there exist natural numbers $n_1, n_2, \cdots, n_m, \cdots$ such that $w_0 \in K_{n_m}^m$ $(m=1,2,\cdots)$. Consequently, the value w_0 is assumed by f(z) in each $D \cap C_{n_m}^m$ $(m=1,2,\cdots)$. If r>0 is arbitrary, and μ is a natural number such that $1/\mu < r$, then $C_{n_\mu}^\mu$ is a subset of the neighbourhood $|z-z_0| < r$. This means that each element of R is assumed by f(z) in any neighbourhood of z_0 . Hence $R \subset R_{z_0}^{(D)}$, which proves our theorem.

References

- [1] K. Noshiro: On the singularities of analytic functions, Jap. Jour. Math., 17, 37-96 (1940).
- [2] F. Bagemihl: On the set of values assumed by holomorphic functions near essential singularities, Math. Zeit., 67, 49-50 (1957).