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(Comm. by Z. SUETUNA, M.b.A., June 12, 1959)

We consider a series with real terms, a (a0-- 0),

and write

(1.1) sr, .. A,_ a 2 A s
0

(1.2)
(-- oo << oo),

(A.2)

where
(9..2)

THEOREM 3. Let 0 <sl, and q be an arbitrary real constant.

(l--x) nax --> 0 (x--> 1--0),

(n-- 1, 2,...),

where s-s, t-t, and A_[7n)./z_\ Then, in particular s0-0, tot-0,

and for n--l, 2,...,
8-an, s--an--a_ --Aa_,
t nan, t nan n 1)a .

The object of this paper is to prove some theorems (Theorems
3-5) which will unify the results of Szsz [-1, Hirokawa [5 and
others. This note is a continuation of Yano [6, 7.

THEOREM 1. Let 0<r, 0<s<l (or s--1,2,...) and 0<al. If

(1.3) t i-o(n +"),

(1.4) E (i t: l--t:)--O(n-),
as n-->oo, then the series

_
a sin nt converges uniformly (on the real

axis).
THEOREM 2. Under the same assumption as in Theorem 1, the

series a cos nt converges uniformly when 0 <a< 1, and in the case
a--1 this series converges uniformly if and only if a converges.

These theorems are an alternative form of Theorem 1 in the
papers [63 and [7 respectively.
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then, (I) a sin nt converges uniformly, and (II) , a cos nt con-
verges uniformly if and only if , a converges.

COROLLARY 3.1. Let p and q be two arbitrary real constants,
then the condition (A.2), and

(2.3) , (! ’ ) 0(1), where

(2.4) ’n-- (1H-qn-)(naH-p) (nH- 1)a H-p,
imply the conclusion of Theorem 3.

This is a result from Theorem 3 with s--l, and this corollary
contains a theorem of Szsz [1, in which the condition (2.3)with
(2.4) is replaced by "pO, qO, and for nno

0(n+1)a/1+p(1+an-1)(na+p) ".
COROLLARY 3.2. The condition (A.2) and

(2.5) (IAa]--Aa)--O(n-1) (n->oo),

imply the uniform convergence of ] a sin nt.
This follows from Corollary 3.1 with p--0 and q-l, since then

’- (nil- 1)Aa.
Proof of Theorem 3. The theorem follows immediately from

Theorems 1, 2 with a--l, and the following lemma.
LEMMA 1. The assumption in Theorem 3 implies t,---o(n), and

(2.6) ] (! t:’ + t:") --O(nl-S)
For the proof of .this lemma we need some other lemmas.
LEMMA 1.1. If a0, and s is defined by (1.1), then the Abel

summability of ] an, i.e.

(A.) (-x) sx-C (x- -0)

implies (1--x) (s,/A)x --> C (x-> 1-0).
This is due to Szsz 3.
LEMM_ 1.2. If (A.1)holds, and s-O(1), then s,.-Cn as n-->oo.
This appears in Hardy [9, p. 155].
LEMMA 1.3. If u0 and a>0, then

u-O(n) :> u-O(n),
:i

71,-0(-) 71,-0(-),

as n-->o. O’s may be replaced by o’s respectively.
This is Lemma 1 in Yano [6.
Proof of Lemma 1. ’ in (2.2) is written as

(2.7) 7,-(F(nH-1H-q)/F(nH-1))Ac,
where ACnCnCn+I and
(2.8) c-- (F(n)/F(n H-q))tl,-.
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Here we may suppose that c0-0 when q--l, and Co, c,.-., c_ are
all zero when q--l. This assumption is permissible with no loss
of generality as the succeeding argument shows. Observing that
F(nq)/F(n)n by Stirling’s formula, the condition (2.1)is, by (2.7),
equivalent to

(2.9)

Now, the condition (A.2), i.e. (l--x) tnXn--->O implies
1--s 1--(2.10) (l--x) (t /A s)xn 0 (X 1--0),

by Lemma 1.1, since 1--s0, and (2.10) is written as

(2.11)’ (l--x) (F(n+q)/F(n)A-)cx 0

by (2.8). Further, observing that F(n+q)/F(n)A-F(2--s)n+-,
we may for the sake of convenience replace (2.11)’ by

(2.11) (l--x) n’+-cx’O (x- 1--0).

If 1--s--q<O, applying Lemma 1.3 to (2.9) we have
+m--1

(2.12)

for all m>0, and then successively

c--c+> -Cn- (m- 1, 2,...),
c>lim sup c-Cn--lim inf Cn lim sup c.

This implies the existence of lim c. which may be finite or --, and
this limit must vanish by (2.11), since if otherwise we have a con-
tradiction. So, letting m, (2.12) yields

i-c Cn

Combining this inequality with (2.11) we get

(l--x)

E 1--0),

where and in the sequel the constant may be different in different
eases. Sinee the eoeeients of are all ositive we get by an
analogue to Lemma 1.2,

From this inequality replaced the lower limit ,-Z in the second sum, by ,-n it follows

n
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which and c-->0 imply c-0(nl-8-).
(2.8) and c-O(n-’-) yield

t(2.13) ---O(n-8), i.e. tljs/A---O(1).
Applying Lemma 1.2 to (2.10) and (2.13) we have -,?..(t-/A-O--o(n),
which is equivalent to t--o(A-) by the well-known property between
Cesro’s summation and HSlder’s. t--o(n-) and (2.13) imply t-+
=o(n-+) for every 0 by a convexity theorem of Tauberian type,
and in particular
(2.1) - o(n).
Further, 7_, in (2.2) is

7-i --t+qn-i--
_

--t. +O(n )
by (2.13). Hence, the proposition (2.6) follows from the last relation
and (2.1), since

([ t: [+t:) [] y_+O(,-) [--_--O(,-)

[(]r_,]-r_)+o(,-O-o(n-O.
This and (2.14) prove the lemma in the present case.

If 1--s--q>O, applying Lemma 1.3 to (2.9) we have
+c<Cn-’-. Substituting this inequality into (2.11),

1 =0

Thus, p’+a- ]Ac. <Cn,

again by an analogue to Lemma 1.2, and so replacing the lower limit
/=1 in ",= by Z n,

n+ ic<Cn.
0

This implies c--O(n--q), and the conclusion is the same as the case
1--s--q<0.

Finally, if 1--s--q-O then (2.11) and (2.9) are reduced to

(-x) cx o (z -o),

and (lAc]--Ac)--O(1) (n),

respectively. These two conditions imply c-O(1)-O(n--q), by a
lemma (Lemma 1) due to Szsz [2J. Hence, in this case also the con-
clusion is the same as the case 1--s--q< O. Thus the lemma is estab-
lished completely.

3. Using Theorems 1, 2 and the preceding lemmas we can prove
the following theorem analogously as Theorem 3.

THEOREM 4. Let 0<sl, and p, q be two arbitrary constants.
If

(A.) (l-z) E sz (x 1-0),
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and , (! 3 -)-O(n-) (n ),

where
(3.1) (1 +qn- )(tl -- ps:) (t+psi-),
then sa, and the series ae converges uniformly (on the real
axis).

COROLLARY 4.1. Let p and q be two arbitrary constants, then
the condition (A.1) and

(3.2) ( 3 -)-0(1), where

(3.3) 6-(l+qn-’)[ns--(n--1)s_+p --[(n+l)s+--nsWp,
imply sa, and the uniform convergence of ae

This follows from Theorem 4 with s--p--1, and contains a theorem
of Szasz [1, in which the condition (3.2) with (3.3) is replaced by
"p0, q0, and for nno

0(n+1)s+--ns+p(1+qn-)[ns--(n-- 1)s_ +p ".
COROLLARY 4.2. The condition (A.1) and

(3.4) (! 9, 0<sl,

imply the uniform convergence of ae
This follows from Theorem 4 with p--l--s and q--l, since then

the identity t=ns---ys_ implies n_----ns- The case s--1 is
as follows:

COROLLARY 4.3. The condition (A.1) and

( Aa l--Aa)--O(n-)
imply the uniform convergence of aent

Remark. We see from Corollary 4.2 that "if a is summable
(C, -1--3) for some positive , then the series a cos nt and an sin nt
converge uniformly" as it is known. But this is not true when =0,
since then a negative example has been given by Izumi [4 for the
cosine series, and by Hardy-Littlewood [8 for the sine series.

Theorems 3, 4 are concerned with the case a--1 in Theorems 1, 2.
In the case 0 < a< 1 we have the following

THEOREM 5. Let 0<r, 0<s<l(ors--l, 2,...),and 0<a<1. If

and E (3 --)-O(n-),
where is defined by (3.1), then an converges, and the series aent

converges uniformly.
COROLLARY 5. If 0<r, 0<a<1, and t=o(n) and

E (] O(n-
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then aent converges uniformly.
This corollary is due to Hirokawa [5J when (3.5) is replaced by

l-O(n-).
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