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1. The main object of this note is to show that the Thue-Siegel-
Roth theorem can somewhat be refined when the field of reference is
an imaginary quadratic number field. The Thue-Siegel-Roth theorem
[1] is

Theorem 1. Let K be an algebraic number field of finite degree
and let o be algebraic of degree at least 2 over K. Then for each
£>2, the inequality

la—¢|< (HE) (1)
has only a finite number of solutions & in K.

Here H(¢) denotes the height of &, the maximum of the absolute
values of the coefficients in the primitive irreducible equation with
rational integral coefficients of which & is a zero, while we designate
by M(&) the absolute value of the highest coefficient in that equation
for &.

Since an algebraic number field K of finite degree has only finitely
many subfields and every element of K is a primitive number of some
one of its subfields, in order to establish Theorem 1 it is enough to
prove that for each x>2, the inequality (1) is satisfied by only finitely
many primitive numbers £ in XK. In this respect the following theorem
will be of some interest:

Theorem 2. Let o be any non-zero algebraic number and let K
be an tmaginary quadratic number field. If the inequality

|a—¢&|<(M()* (2)
18 satisfied by infinitely many primitive numbers & in K, then x<1.

It is clear that M(§)<H(¢) for any fixed & and M(¢)=1 for any
integral £&. From this result one can deduce at once the following

Theorem 3. Let a and K be as in Theorem 2. Then for each
v>2, the inequality

0<| a—£l< 1
qa! el
has only a finite number of integer solutions p,q (¢=:0) in K.
If, in (8), » and ¢ (930) are restricted to be rational integers,
Theorem 3 reduces to a recent result of K.F. Roth [3], and we may
exclude this rational case. Then the fraction p/q¢ with integers p, ¢
(g=:0) in K is a primitive number ¢ in K, and, for any representation
E=9'/q’ of the number & with integers p’, ¢’ (¢'=:0) in K, it satisfies

(3)
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an irreducible equation of the type*’
| ¢ |2 a®+2h x| p’ |*=0,
h being a certain rational integer. Hence, by the definition of M(&),
we have M(6)<|q'|* and, in particular,
ME=|ql"
Thus Theorem 3 is an immediate consequence of Theorem 2.

We remark that Theorem 3 is the best result of its kind possible
if v is to be independent of |g|, since O. Perron’s result [2] shows
that for any complex irrational number « there are infinitely many
pairs of integers p, ¢ (¢=F0) in every imaginary quadratic number field
K satisfying the inequality

=2 <o
gl lqf
where C>0 is a constant depending only on K.

2. Our proof of Theorem 2 follows the lines of Roth’s work [3]
with some modifications. The following arguments will suggest inci-
dentally the possibility of making a slight simplification on W.d.
LeVeque’s proof [1] of Theorem 1.

Let m, qy,+ -+, Quy 71, ++, 7, be positive rational integers. First we
note that Lemmas 5, 6 and hence Lemma 7 in [3] hold true with any
algebraic numbers &,,---, &, such that M(&)=q,,- -, M(§,)=4q, in place
of rational fractions h,/q,,---,h,/q, respectively, where 1=p=m.
Necessary changes in the proofs of them are obvious.

Suppose now that « is an algebraic integer other than zero, and
let K be an imaginary quadratic number field. We take a single set
of values of the numbers m,d, g, -, @y, 71, =+, ¥,, Which satisfy the
conditions (29), (30), (81), (32) and (33) of [3]. Also we define the numbers
A,7,7m, B, as in [8]. Then we can prove the following lemma which
is an analogue of Lemma 9 of [3].

Lemma. Suppose that the conditions just imposed for m,éd, q,,- - -,
Qp» 71y **, T, are satisfied, and suppose that &,,---,&, are arbitrary
numbers in K such that M(¢)=q,, -, M(¢,)=q,. Then there exists
a polynomial Q(x,,-- -, ®,) with rational integral coefficients, of degree
at most 7, in «, (j=1,---, m), such that

(i) the index of @ at the point (a,-::, a) relative to ry,---, 7,
is at least y—;

(il) Q(El!"'!ém)ﬂFO;

(iii) for all derivatives Q; ..., (2, -, ®,), where ¢,,- -, i, are any
non-negative integers, we have

Qs (@, ey @) |< B,

*) The square of the absolute value of an integer in K is equal to the norm of
the integer and hence is a rational integer: it is positive when the integer is =¢0.
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3. We are now going to prove Theorem 2. Let a be a non-
zero algebraic number and let K be an imaginary quadratic number
field. Suppose that the theorem is false, so that for some £ >1, there
exists a set E of infinitely many primitive numbers ¢ (¥«a) in K satis-
fying the inequality (2). Then M(¢) is not bounded when £ runs through
the elements of E. For, otherwise, it would follow from the relation

| M(&)-§ =M M(E™)
that M(¢-') is unbounded when & runs through the elements of E,
since there are only a finite number of integers in K with a given
norm. But every & in E is a solution of (2), so that
lé1=|a|+ME) " =|a|+1,
MEY e "
e = e (el <,
which is impossible. Hence there are primitive solutions & of (2) with
arbitrarily large M(¢), and we may now suppose that « is an algebraic
integer. For, if not, putting a=M(a), we have for each ¢ in F
0<|aa—at[<a(M(E) " =a(M(as))".
Hence for arbitrary ¢>0 and for all £ in E with M(¢) sufficiently large
0<|aa—aé |<(M(ag))~"*,
and ¢ can be chosen so small that xr—e>1.
We first choose m so large that m >4nm'? where n is the degree
of a over the rationals, and that
m
m-—4nm‘/2<x’ (4)
which is possible since £k>1. We then take d to be a sufficiently small
positive number, so that the condition (29) of [3] holds. By the
definitions of 2, 7 and 7, it follows from (4) that
(1+0)m+20(1+49) _
2(r—m)

(5)

for all sufficiently small é.

We now choose a solution & of (2) from the infinite set E, with
M(e))=gq, sufficiently large to satisfy (32) of [3]. We then choose
further solutions &,-- -, &, of (2) from E with M(&,)=qs,- -+, M(€,.) =,
where ¢,,- -, q,, are positive rational integers satisfying the condition
(50) of [8]. Finally, we define the positive integers -+, r, by (51)
and (52) of [3].

We know from the lemma noted above that there exists a poly-

nomial Q(x,,- .-, x,) with the properties listed there. Then the number
P=Q(E1, "+, &)

is an element of K, and we have
1=q" - grel% (6)

since the number on the right-hand side of (6) is a non-zero rational
integer.
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On the other hand, we have

Q(&l, Tt ‘fm)
:i2=0 o .12730(211'“% (s ) (Er—a)'se - (En—a)'m,

and by the lemma we find that
' ® |<B}+“q1‘r’(7'””,
whence follows that
ATERY A |SD|2<qiacx+4a)r1+<1+s)mrrzrl(r-a)t
Comparing this with (6), we obtain
0<26(1+46)+ (1+-0)ym—2(r —n)x,
or
o< (1+0)m+20(1+40) ’
2(r—n)
which contradicts (5). This completes the proof of Theorem 2.
We note that our argument can be extended to obtain an analogue
of a theorem of D. Ridout (Rational approximations to algebraic

numbers, Mathematika, 4, 1256-131 (1957)) in imaginary quadratic
number fields.
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