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A subsemigroup B of the direct product B B2 ... B of bands
(i.e. idempotent semigroups) B1, B2,..., Bn is called a subdirect prod-
uct of B, B,..., B if every i,

where , is the i-th projection of BB.... B.
Let 9,,...,9L be congruences on a band S. Then the set

S*=[(91(a), 9.(a),..., 9,(a)): aS}, where each 9 is the natural homo-
morphism of S to S/9t,, becomes a subdireet product of S/t, S/,.,...,
S/9,. Such S* is called the natural representation of S induced by
,,’",L, and denoted by S/9oS/gL.o...oS/9. Especially, it
has been shown by Birkhoff [1 that if f. f }t-- 0," then
S/9toS/9L.o...oS/9 is an isomorphic representation of S.

Another important type of subdireet product, which is often used
in the study of bands, is spined product introduced by Kimura [2:

Let S, S,..., Sn be bands having F as their structure semilattices.
And let , :S,-.X[S(:I’], for each i with lin, be the structure
decomposition of S,.) Then, the set S= [3 [S: S. ... SJ:re F} be-
comes a subdirect product of S, $2,..., S. Such S is called the spined
product of S, $2,..., Sn with respect to I’, and denoted by SIS.
..S ().

The main purpose of this paper is to present the following rep-
resentation theorem which clarifies the relation between such two
special kinds of subclirect product.

Theorem. Let S be a band, and ’:S---2,’{Sr :yeI’} its structure
decomposition. Let , 9L.,..., , n2, be congruences on S.

If , ,. ., satisfy

1) The ordering in the set 9 of all congruences on S is as follows" For , e 9,
92 if and only if for x, y e S x y implies x y. The element 0 will denote the
least element of in the sense of this ordering.

2) Let S be a band. Then, there exist a semilattice /" and a disjoint family of
rectangular subsemigroups of S indexed by /’, {Sr" re/’}, such that

S= U {S" re/’}
and SSS for , e

(see McLean [3]). In this case /" is determined uniquely up to isomorphism, and called
the structure semilattice of S. Further this decomposition, say ), gives a congruence
called the structure decomposition of S and denoted by
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(C. 1) tl, .,’’ ",

(c. e) .... -=0,
(C) (C. 3) 12"" and + are permutable for all i,

lin--1,
(C. 4) 9... n,)Ugt+= for all i, lin--1,

then SS/S/...S/}n(F).) Further, in this case
s/9 s/. s/9 s/9 S/9n ).

The essential step towards establishing this theorem is the proof
of

Lemma. Let S be a band, and ’SX{Sr" eF} its structure
decomposition. Let , ,..., , n2, be congruences on S.

If 1, 2,’’’, n satisfy (C. 1), then for each i with lin
the structure decomposition of S/t is S/tX[Sr/" eF}.

(b) If , ,. ., satisfy (C. 1), (C. 3) and (C. 4), then S/9o
s/ S/9. s/ s/9 / ).

Proof. (a) Let be the natural homomorphism of S to S/9.
Define a relation on S/9 as follows: (x)(y) if and only if
x’y’ for some x’ e (x), y’ e (y).

Then, gives the structure decomposition of S/9. Denote by

5 the congruence class containing x mod , and by (x) the congruence
class containing (x) rood .

Then, the mapping defined by

% .Sl(x)Sll
is an isomorphism of S/ onto S/9/, and .(S)-S/9t for all y e F.
Hence, the structure decomposition of S/9 is S/9tX[S/9t’eF}.

(b) Let ((x), (x),..., (x)) be an element of S/toS/o...
oS/9. Since for each i with lin--1 (x)eS/9 if xeS, we have

((x), (x),. ., e(x)) e/ z/9...
s/s/9s/9...s/9 (F).

Conversely pick up an element ((a), (a),..., n(a)) from
S/S/9...S/tn (F). Then, there exists S containing all a.
Since 9--, we have a(gt 9)a. Therefore, there exists an
element x such that ax and a9tX. Since (9 9) 9-- and
9t, we have x((9 ) 9)a. Therefore, there exists an element
x such that x(99)x and xa. Hence a9x, ax and ax.
Repeating n--1 times this process, we obtain an element x. such that
a]xn, a]Xn," ", annX

Thus (x)=(a) for all i, and hence
(e(a), (a),..., e(a))
(e(x), e(x),..., e(x))s/os/o.., os/9.

Accordingly, we conclude S/9oS/9o... oS/9 S/9 S/...
3) The notation means the term ’... is isomorphic to .-.’.
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(r).
Now we can easily prove our theorem by using this lemma and

the result of Birkhoff [1.) In fact: Since } rl [li. r]... rl [l- 0, the
relation S=S/oS/.o...oS/ follows from the result of Birkhoff
[lJ. On the other hand, the relation S/9toS/9o...oS/9t=S/9
S/9t.N....N.S/9[ (F) follows from (b) of the lemma. Thus, we have.
SSlb4 Si.b< b4Sl (F) Sl,_oSl oSI.

Corollary. Let S be a non-commutative band, and ’S..X{S,"
re/"} its structure decomposition. Let , ,..., be congruences
on S.

If ,, ,. ., satisfy

(C*. 1) , i}t:,..., i} are comparable with (i.e. or
<_____ for each i)

(c*) (c*. 2) --0,
(C*. 3) }INg.N"" rl}i and + are permutable for all i,

l<__i<_n--1,

then S --- S/9I MS/9.M M.S/9 (F) S/9,oS/.o S/9r for some,, ," ", r with lin.
Application. Let S be a F(A)-regular band,) and " S-,${Sr"

re[’} its structure decomposition. Define relations 0, 0. on S as
follows:

ab-a and both a and b are contained in a
S,

aOb if and only if or
cmmn

ab=b and both a and b are contained in a
common St, r A,

ab--a and both a and b are contained in a
common S, yeA,

aOb if and only if or
ab-b and both a and b are contained in a
common St, A.

Then, 0, 0. are congruences on S which satisfy (C) of the theorem.
Hence, SS/ONS/O(F)-S/OoS/O.. This shows that a F(A)-regular
band is isomorphic to the spined product of a (F, F\A)-regular band
and a (F, A)-regular band, and especially that a regular band is iso-
morphic to the spined product of a left regular band and a right
regular band.)

4) See p. 92.
5) See Yamada [4].
6) These assertions have been proved also by Yamada [4] and Kimura [2], re-

spectively.
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