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99. A Note on Subdirect Decompositions of
Idempotent Semigroups

By Miyuki YAMADA
Shimane University
(Comm. by K. KUNUGI, M.J.A., July 12, 1960)

A subsemigroup B of the direct product B; X B, X + - - X B, of bands
(i.e. idempotent semigroups) B;, B,,---, B, is called a subdirect prod-
uct of B, B,,---, B, if every 1,

Sz(B) =B,
where &, is the ¢-th projection of B, X B,X -+ XB,.

Let R, N,,---, N, be congruences on a band S. Then the set
S*={(¢i(@), p(@),- - -, ¢..(@)): a€S}, where each ¢, is the natural homo-
morphism of S to S/, becomes a subdirect product of S/N,, S/R,,- -,
S/R,. Such S* is called the natural representation of S induced by
R, N, -+, RN, and denoted by S/H,oS/Ryo...oS/R,,. Especially, it
has been shown by Birkhoff [1] that if R,NR,N---NNR,.=0," then
S/J,0S/Ry0- - -0S/N,. is an isomorphic representation of S.

Another important type of subdirect product, which is often used
in the study of bands, is spined product introduced by Kimura [2]:

Let S;, S,,- -+, S, be bands having I" as their structure semilattices.
And let ©,:S,~3{S/:7el'}, for each ¢ with 1=<1<mn, be the structure
decomposition of S, Then, the set S=[J{S7/ XSy X -+« XS :7el'} be-
comes a subdireet product of S,;,S,,---,S,. Such S is called the spined
product of S;,S,,---,S, with respect to I, and denoted by S,;XS;X
<o )S, ().

The main purpose of this paper is to present the following rep-
resentation theorem which clarifies the relation between such two
special kinds of subdirect product.

Theorem. Let S be a band, and D:S~I{S,:rel'} its structure
decomposition. Let R, N,,---, R, n=2, be congruences on S.

If R/, R,,---, RN, satisfy

1) The ordering in the set £ of all congruences on S is as follows: For %, Be 2,
A= if and only if for =, ycS x Ny implies £By. The element 0 will denote the
least element of 2 in the sense of this ordering.

2) Let S be a band. Then, there exist a semilattice I and a disjoint family of
rectangular subsemigroups of S indexed by I', {S,: r&I'}, such that

S=uU{S,:rel'}
and S:SpcS.s  for @, Bel’
(see McLean [3]). In this case I" is determined uniquely up to isomorphism, and called
the structure semilattice of S. Further this decomposition, say D, gives a congruence
called the structure decomposition of S and denoted by S~2{S,:rel'}.
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(C° 1) ml, 8%2r' ) gtném;
(C.2) ®NRN -~ Nk, =0,
(C) (C.3) ,NR,N---NR, and R,,, are permutadble for all 1,
1<i<n—1,
(C.4) ®RNRN---NRY)UR,L,=D for all 4, 1=i=n—1,
then S=<S/R XS/R,<--SIR, (IN).Y Further, in this case S[3;o
S/Ryo- oS/, =S/R, < S/Ryb<- + - SR, ().

The essential step towards establishing this theorem is the proof
of

Lemma. Let S be a band, and D:S~3{S,:rel'} its structure
decomposition. Let R, R,,..-, R, n=2, be congruences on S.

(a) If R, N,,..., R, satisfy (C.1), then for each v with 1<i<n
the structure decomposition of S/R, is S/R,~Z{S,/R,:rel'}.

(b) If R, R,,..., N, satisfy (C.1), (C.3) and (C.4), then S/H°
S/Ryo. oS, =S/, SR <- - - SR, ().

Proof. (a) Let ¢, be the natural homomorphism of S to S/&..
Define a relation D, on S/, as follows: ¢,(®)D,0,(y) if and only if
' Dy’ for some x'co,(x), ¥ €@,(y).

Then, D, gives the structure decomposition of S/R,. Denote by
% the congruence class containing  mod O, and by m the congruence
class containing ¢,(x) mod D,.

Then, the mapping Y, defined by

v, 1 S/D 3T > o, (x) € S/R,/D,
is an isomorphism of S/D onto S/R,/D,, and ¥,(S,)=S,/R, for all yel".
Hence, the structure decomposition of S/R, is S/R, ~Z{S,/R,:rel}.

(b) Let (p)(x), ps(x),- -+, 0.(x)) be an element of S/R;oS/Ryo-.--

oS/R,. Since for each ¢ with 1<1<<n—1 ¢,(x)eS,/R,; if xeS,, we have
(01(), 0o(®),+ « -, 0 (@) €S,/ Ry XS, /Ry X - - -
XS, /R, SR SRy - - SIR, ().

Conversely pick up an element (¢;(a,), p.(ay),---, ¢.(a,)) from
S/, S/Ry<- - X S/NR, (I'). Then, there exists S, containing all a,.
Since N,UR,=D, we have a,(R,UN,)a,. Therefore, there exists an
element x, such that a,R,x, and a,N,x,. Since R, NRNHUR;=D and
N, <D, we have (RN, NR) UNRs)a;. Therefore, there exists an element
x, such that x,(, NNz, and 2,N,a,. Hence a,N,x;, a,N,x, and @),
Repeating n—1 times this process, we obtain an element «, such that
a R, a.R2,, - -, a,R,,.

Thus ¢,(x,)=¢,(a,) for all 4, and hence

(e1(ay), 02(as), - +, @u(@,))
=(P1(®,), @a(n),* -+, @u(®,)) €S/R2S/Ry0 - - - 0 S/R,,.
Accordingly, we conclude S/R;oS/R,o-.-0S/R, =S/, SR04 - -

3) The notation = means the term ‘--- is isomorphic to ---’,
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MSIR, ().

Now we can easily prove our theorem by using this lemma and
the result of Birkhoff [1].* In fact: Since R, ---NR,=0, the
relation S=S/R,oS/MR,o..-oS/N, follows from the result of Birkhoff
[1]. On the other hand, the relation S/%;oS/Jyo...oS/R, =S/N X
S/, <- - i SR, (I') follows from (b) of the lemma. Thus, we have
S=S/R, > S/Ryb< -+ - XS/R, (IN=S/R,oS/Ryo- - - oSN,

Corollary. Let S be a mon-commutative band, and D:S~I{S,:
rel'} its structure decomposition. Let R, R, ---, R, be congruences
on S.

If R, N, -, N, satisfy

(C*.1) R, Ry, -+, R, are comparable with D (i.e. B;=D or

R. <D for each 1),
(C*) (c*.2) ®mN%R.N---NR,=0, .

(C*.8) ®,NN,N--- NN, and R,,, are permutable for all 1,

1<i<n-—1,

(C*.4) NRN---NRYUR,,=D for all 14, 1=i=n—1,
then S==S/R;, XS/R; - -D¢S/R; (I")=8/R;,°S[R;,0- - oSN, for some
R, Ry oo, Ry, with 159, <m.

Application. Let S be a I'(4d)-regular band,” and ©:S~I{S,:
yel'} its structure decomposition. Define relations 6,6, on S as
follows:
ab=a and both @ and b are contained in a
. . common S,, red,
af.b if and only if or
ab=>b and both a and b are contained in a

common S,, r¢4,

ab=a and both @ and b are contained in a
common S,, r¢4,

afd,b if and only if ¢ or

ab=5b and both a and b are contained in a
common S,, yed.

Then, 6,, 6, are congruences on S which satisfy (C) of the theorem.
Hence, S==S/6,xS/0,(I")=8/6,°S/6,. This shows that a I'(d)-regular
band is isomorphic to the spined product of a (I7, I'\4)-regular band
and a (I', 4)-regular band, and especially that a regular band is iso-
morphic to the spined product of a left regular band and a right
regular band.®

4) See p. 92.
5) See Yamada [4].

6) These assertions have been proved also by Yamada [4] and Kimura [2], re-
spectively.
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