99. A Note on Subdirect Decompositions of Idempotent Semigroups

By Miyuki YAMADA

Shimane University

(Comm. by K. KUNUGI, M.J.A., July 12, 1960)

A subsemigroup B of the direct product $B_1 \times B_2 \times \cdots \times B_n$ of bands (i.e. idempotent semigroups) B_1, B_2, \cdots, B_n is called a *subdirect product* of B_1, B_2, \cdots, B_n if every i,

$$\xi_i(B) = B_i$$

where ξ_i is the *i*-th projection of $B_1 \times B_2 \times \cdots \times B_n$.

Let $\Re_1, \Re_2, \cdots, \Re_m$ be congruences on a band S. Then the set $S^* = \{(\varphi_1(a), \varphi_2(a), \cdots, \varphi_m(a)) : a \in S\}$, where each φ_i is the natural homomorphism of S to S/\Re_i , becomes a subdirect product of $S/\Re_1, S/\Re_2, \cdots, S/\Re_m$. Such S^* is called the *natural representation* of S induced by $\Re_1, \Re_2, \cdots, \Re_m$, and denoted by $S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_m$. Especially, it has been shown by Birkhoff [1] that if $\Re_1 \cap \Re_2 \cap \cdots \cap \Re_m = 0$, then $S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_m$ is an isomorphic representation of S.

Another important type of subdirect product, which is often used in the study of bands, is $spined\ product$ introduced by Kimura [2]:

Let S_1, S_2, \dots, S_n be bands having Γ as their structure semilattices. And let $\mathfrak{D}_i: S_i \sim \Sigma\{S_i^{\gamma}: \gamma \in \Gamma\}$, for each i with $1 \leq i \leq n$, be the structure decomposition of S_i . Then, the set $S = \bigcup \{S_1^{\gamma} \times S_2^{\gamma} \times \dots \times S_n^{\gamma}: \gamma \in \Gamma\}$ becomes a subdirect product of S_1, S_2, \dots, S_n . Such S is called the spined product of S_1, S_2, \dots, S_n with respect to Γ , and denoted by $S_1 \bowtie S_2 \bowtie \dots \bowtie S_n(\Gamma)$.

The main purpose of this paper is to present the following representation theorem which clarifies the relation between such two special kinds of subdirect product.

Theorem. Let S be a band, and $\mathfrak{D}: S \sim \Sigma\{S_r : r \in I'\}$ its structure decomposition. Let $\mathfrak{R}_1, \mathfrak{R}_2, \dots, \mathfrak{R}_n, n \geq 2$, be congruences on S.

If
$$\Re_1, \Re_2, \cdots, \Re_n$$
 satisfy

$$S = \cup \{S_{\gamma} \colon \gamma \in \Gamma\}$$
 and $S_{lpha}S_{eta} \subset S_{lphaeta}$ for $lpha, \, eta \in \Gamma$

(see McLean [3]). In this case Γ is determined uniquely up to isomorphism, and called the structure semilattice of S. Further this decomposition, say \mathfrak{D} , gives a congruence called the structure decomposition of S and denoted by $S \sim \Sigma\{S_r : r \in \Gamma\}$.

¹⁾ The ordering in the set Ω of all congruences on S is as follows: For $\mathfrak{A}, \mathfrak{B} \in \Omega$, $\mathfrak{A} \subseteq \mathfrak{B}$ if and only if for $x, y \in S$ $x \mathfrak{A} y$ implies $x \mathfrak{B} y$. The element 0 will denote the least element of Ω in the sense of this ordering.

²⁾ Let S be a band. Then, there exist a semilattice Γ and a disjoint family of rectangular subsemigroups of S indexed by Γ , $\{S_r : r \in \Gamma\}$, such that

$$(C) \begin{cases} (C.1) \ \Re_1, \Re_2, \cdots, \Re_n \leqq \mathfrak{D}, \\ (C.2) \ \Re_1 \cap \Re_2 \cap \cdots \cap \Re_n = 0, \\ (C.3) \ \Re_1 \cap \Re_2 \cap \cdots \cap \Re_i \ and \ \Re_{i+1} \ are \ permutable \ for \ all \ i, \\ 1 \leqq i \leqq n-1, \\ (C.4) \ (\Re_1 \cap \Re_2 \cap \cdots \cap \Re_i) \cup \Re_{i+1} = \mathfrak{D} \ for \ all \ i, \ 1 \leqq i \leqq n-1, \\ then \ S \cong S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots \bowtie S/\Re_n (\Gamma).^{3)} \ Further, \ in \ this \ case \ S/\Re_1 \circ$$

The essential step towards establishing this theorem is the proof of

Lemma. Let S be a band, and $\mathfrak{D}: S \sim \Sigma\{S_{\tau}: \gamma \in \Gamma\}$ its structure decomposition. Let $\Re_1, \Re_2, \dots, \Re_n$, $n \geq 2$, be congruences on S.

- (a) If $\Re_1, \Re_2, \dots, \Re_n$ satisfy (C.1), then for each i with $1 \leq i \leq n$ the structure decomposition of S/\Re_i is $S/\Re_i \sim \Sigma\{S_r/\Re_i: \gamma \in \Gamma\}$.
- (b) If $\Re_1, \Re_2, \dots, \Re_n$ satisfy (C. 1), (C. 3) and (C. 4), then $S/\Re_1 \circ S/\Re_2 \circ \dots \circ S/\Re_n = S/\Re_1 \bowtie S/\Re_2 \bowtie \dots \bowtie S/\Re_n$ (Γ).

Proof. (a) Let φ_i be the natural homomorphism of S to S/\Re_i . Define a relation \mathfrak{D}_i on S/\Re_i as follows: $\varphi_i(x)\mathfrak{D}_i\varphi_i(y)$ if and only if $x'\mathfrak{D}y'$ for some $x'\in\varphi_i(x)$, $y'\in\varphi_i(y)$.

Then, \mathfrak{D}_i gives the structure decomposition of S/\mathfrak{R}_i . Denote by \overline{x} the congruence class containing $x \mod \mathfrak{D}$, and by $\widetilde{\varphi_i(x)}$ the congruence class containing $\varphi_i(x) \mod \mathfrak{D}_i$.

Then, the mapping ψ_i defined by

 $S/\Re_2 \circ \cdots \circ S/\Re_n = S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots \bowtie S/\Re_n (\Gamma).$

$$\psi_i: S/\mathfrak{D} \ni \overline{x} \to \widetilde{\varphi_i(x)} \in S/\mathfrak{R}_i/\mathfrak{D}_i$$

is an isomorphism of S/\mathfrak{D} onto $S/\mathfrak{R}_i/\mathfrak{D}_i$, and $\psi_i(S_r) = S_r/\mathfrak{R}_i$ for all $\gamma \in \Gamma$. Hence, the structure decomposition of S/\mathfrak{R}_i is $S/\mathfrak{R}_i \sim \Sigma\{S_r/\mathfrak{R}_i: \gamma \in \Gamma\}$.

(b) Let $(\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x))$ be an element of $S/\Re_1 \circ S/\Re_2 \circ \dots \circ S/\Re_n$. Since for each i with $1 \leq i \leq n-1$ $\varphi_i(x) \in S_r/\Re_i$ if $x \in S_r$, we have $(\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)) \in S_r/\Re_1 \times S_r/\Re_2 \times \dots$

$$\times S_r/\Re_n \subset S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots \bowtie S/\Re_n (\Gamma).$$

Conversely pick up an element $(\varphi_1(a_1), \varphi_2(a_2), \cdots, \varphi_n(a_n))$ from $S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots \bowtie S/\Re_n$ (Γ). Then, there exists S_τ containing all a_i . Since $\Re_1 \bigcup \Re_2 = \mathfrak{D}$, we have $a_1(\Re_1 \bigcup \Re_2)a_2$. Therefore, there exists an element x_2 such that $a_1\Re_1x_2$ and $a_2\Re_2x_2$. Since $(\Re_1 \bigcap \Re_2) \bigcup \Re_3 = \mathfrak{D}$ and $\Re_2 \leq \mathfrak{D}$, we have $x_2((\Re_1 \bigcap \Re_2) \bigcup \Re_3)a_3$. Therefore, there exists an element x_3 such that $x_2(\Re_1 \bigcap \Re_2)x_3$ and $x_3\Re_3a_3$. Hence $a_1\Re_1x_3$, $a_2\Re_2x_3$ and $a_3\Re_3x_3$. Repeating n-1 times this process, we obtain an element x_n such that $a_1\Re_1x_n$, $a_2\Re_2x_n$, \cdots , $a_n\Re_nx_n$.

Thus
$$\varphi_i(x_n) = \varphi_i(a_i)$$
 for all i , and hence
$$(\varphi_1(a_1), \varphi_2(a_2), \cdots, \varphi_n(a_n)) = (\varphi_1(x_n), \varphi_2(x_n), \cdots, \varphi_n(x_n)) \in S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_n.$$
 Accordingly, we conclude $S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_n = S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots$

³⁾ The notation \cong means the term '... is isomorphic to ...'.

 $\bowtie S/\Re_n(\Gamma)$.

Now we can easily prove our theorem by using this lemma and the result of Birkhoff [1]. In fact: Since $\Re_1 \cap \Re_2 \cap \cdots \cap \Re_n = 0$, the relation $S \cong S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_n$ follows from the result of Birkhoff [1]. On the other hand, the relation $S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_n = S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots \bowtie S/\Re_n (\Gamma)$ follows from (b) of the lemma. Thus, we have $S \cong S/\Re_1 \bowtie S/\Re_2 \bowtie \cdots \bowtie S/\Re_n (\Gamma) = S/\Re_1 \circ S/\Re_2 \circ \cdots \circ S/\Re_n$.

Corollary. Let S be a non-commutative band, and $\mathfrak{D}: S \sim \Sigma\{S_r: \gamma \in \Gamma\}$ its structure decomposition. Let $\Re_1, \Re_2, \dots, \Re_n$ be congruences on S.

$$(C^*) \begin{array}{l} If \ \Re_1, \Re_2, \cdots, \Re_n \ \ satisfy \\ & \left\{ \begin{array}{l} (\mathbb{C}^*.\ 1) \ \Re_1, \Re_2, \cdots, \Re_n \ \ are \ \ comparable \ \ with \ \ \mathbb{D} \ \ (i.e. \ \Re_i \geq \mathbb{D} \ \ or \\ & \Re_i \leq \mathbb{D} \ \ for \ \ each \ \ i), \\ & (C^*.\ 2) \ \Re_1 \cap \Re_2 \cap \cdots \cap \Re_n = 0, \\ & (C^*.\ 3) \ \Re_1 \cap \Re_2 \cap \cdots \cap \Re_i \ \ and \ \ \Re_{i+1} \ \ are \ \ permutable \ \ for \ \ all \ \ i, \\ & 1 \leq i \leq n-1, \\ & (C^*.\ 4) \ (\Re_1 \cap \Re_2 \cap \cdots \cap \Re_i) \cup \Re_{i+1} \geq \mathbb{D} \ \ for \ \ all \ \ i, \ 1 \leq i \leq n-1, \end{array}$$

then $S \cong S/\Re_{i_1} \bowtie S/\Re_{i_2} \bowtie \cdots \bowtie S/\Re_{i_r} (\Gamma) = S/\Re_{i_1} \circ S/\Re_{i_2} \circ \cdots \circ S/\Re_{i_r}$ for some $\Re_{i_1}, \Re_{i_2}, \cdots, \Re_{i_r}$ with $1 \leq i_j \leq n$.

Application. Let S be a $\Gamma(\Delta)$ -regular band, S and $S: S \sim \Sigma \{S_r : r \in \Gamma\}$ its structure decomposition. Define relations θ_1 , θ_2 on S as follows:

```
a\theta_1 b \text{ if and only if } \begin{cases} ab\!=\!a \text{ and both } a \text{ and } b \text{ are contained in a} \\ \text{common } S_r, \gamma \!\in\! \! \varDelta, \\ \text{or} \\ ab\!=\!b \text{ and both } a \text{ and } b \text{ are contained in a} \\ \text{common } S_r, \gamma \!\notin\! \! \varDelta, \\ \\ a\theta_2 b \text{ if and only if } \begin{cases} ab\!=\!a \text{ and both } a \text{ and } b \text{ are contained in a} \\ \text{common } S_r, \gamma \!\notin\! \! \varDelta, \\ \text{or} \\ ab\!=\!b \text{ and both } a \text{ and } b \text{ are contained in a} \\ \text{common } S_r, \gamma \!\in\! \! \varDelta. \end{cases}
```

Then, θ_1 , θ_2 are congruences on S which satisfy (C) of the theorem. Hence, $S \cong S/\theta_1 \bowtie S/\theta_2(\Gamma) = S/\theta_1 \circ S/\theta_2$. This shows that a $\Gamma(\Delta)$ -regular band is isomorphic to the spined product of a $(\Gamma, \Gamma \setminus \Delta)$ -regular band and a (Γ, Δ) -regular band, and especially that a regular band is isomorphic to the spined product of a left regular band and a right regular band.

⁴⁾ See p. 92.

⁵⁾ See Yamada [4].

⁶⁾ These assertions have been proved also by Yamada [4] and Kimura [2], respectively.

References

- [1] G. Birkhoff: Lattice Theory, New York (1940).
- [2] N. Kimura: The structure of idempotent semigroups (1), Pacific Jour. Math., 8, 257-275 (1958).
- [3] D. McLean: Idempotent semigroups, Amer. Math. Monthly, 61, 110-113 (1954).
- [4] M. Yamada: Certain congruences and the structure of some special bands, Proc. Japan Acad., 36, 408-410 (1960).