96. A Necessary and Sufficient Condition under which $\dim (X \times Y) = \dim X + \dim Y$

By Yukihiro Kodama

(Comm. by K. KUNUGI, M.J.A., July 12, 1960)

§ 1. Introduction. Let X and Y be locally compact fully normal spaces. It is well known that the relation $\dim (X \times Y) \leq \dim X + \dim Y$ holds, where dim means the covering dimension (cf. [12]). But, the following stronger relation (*) does not hold in general: (*) $\dim (X \times Y) = \dim X + \dim Y$. Some necessary conditions in order that the relation (*) hold have been obtained by E. Dyer¹⁾ and the author.²⁾ However, these conditions are not a sufficient condition.³⁾ The object of this paper is to obtain a necessary and sufficient condition under which the relation (*) is true.

Let G be an abelian group. The homological dimension of X with respect to G (notation: $D_*(X:G)$) is the largest integer n such that there exists a pair (A, B) of closed subsets of X whose n-dimensional (unrestricted) Čech homology group $H_n(A, B:G)^{(4)}$ with coefficients in G is not zero. A space X is called full-dimensional with respect to G if $D_*(X:G) = \dim X$. Let us use the following notations: R = the additive group of all rationals, Z = the additive group of all integers, $R_1 =$ the factor group R/Z, $Q_p =$ the p-primary component of R_1 for a prime p, $Z_q =$ the cyclic group with order q(=Z/qZ), $Z(a_p) =$ the limit group of the inverse system $\{Z_{p^i}: h_i^{i+1}; i=1, 2, \cdots\}$, where h_i^{i+1} is a natural homomorphism from $Z_{p^{i+1}}$ onto Z_{p^i} . We shall prove the following theorem.

Theorem. Let X and Y be locally compact fully normal spaces. In order that the relation $\dim (X \times Y) = \dim X + \dim Y$ hold it is necessary and sufficient that at least one of the following four conditions be satisfied:

- (1) X and Y are full-dimensional with respect to R.
- (2) X and Y are full-dimensional with respect to Z_p for a prime p.
- (3) X and Y are full-dimensional with respect to $Z(\mathfrak{a}_p)$ and Q_p for a prime p respectively.
- (4) X and Y are full-dimensional with respect to Q_p and Z(a_p) for a prime p respectively.
 - 1) Cf. [5, Theorem 4.1].
 - 2) Cf. [10, Theorem 5].
 - 3) Cf. [5, p. 141].
 - 4) Cf. [4] and [9, p. 96].
 - 5) Cf. [8, p. 385].

As Prof. K. Morita pointed out, there exists an intimate relation between the groups Q_p and R_p ,⁶⁾ where R_p is the additive group of all rationals whose denominators are coprime with p. Therefore, in case X and Y are compact spaces, our theorem is a consequence of Bockstein's and Dyer's theorems (cf. [2], [3] and [5]). We shall give a simple and direct proof of the above theorem without making use of any duality and Bockstein's theorem.

§2. Lemmas

Let X be a fully normal space (cf. [13]). By a covering we mean a locally finite open covering. Let G and H be abelian groups and ρ a homomorphisms of G into H. Let us define an auxiliary dimension function $d_*(X:\rho)$. Suppose that there exist a pair (A, B)of closed subsets and a covering l_0 of X having the following properties: whenever \mathfrak{B} is any refinement of l_0 , we have $0 = \rho_* \Pi_* H_n(M,$ $N:G) \subset H_n(K, L:H)$, where (K, L) and (M, N) are the pairs of the nerves of l_0 and \mathfrak{B} corresponding to (A, B), Π_* and ρ_* are natural homomorphisms induced by a projection $\Pi: (M, N) \to (K, L)$ and the homomorphism $\rho: G \to H$. Then we shall write $d_*(X:\rho) \ge n$. If we have $d_*(X:\rho) \ge n$, but not $d_*(X:\rho) \ge i$ for any i > n, then we write $d_*(X:\rho) = n$. If G = H and ρ is the identity homomorphism, we shall write $d_*(X:G)$ instead of $d_*(X:\rho)$. Let us denote by $\rho_k[p]$ and $\rho_k^i[p]$ natural homomorphisms from Z and Z_{p^j} onto Z_{p^k} respectively, where k and j are positive integers such that j > k.

Lemma 1. An n-dimensional compact space X is full-dimensional with respect to R if and only if $d_*(X;Z)=n$.

Proof. For any fully normal space X, the relations $d_*(X:R) = \dim X$ and $d_*(X:Z) = \dim X$ are equivalent. Since R is a field, by [Lemma 5.8, Chap. VIII], the relation $D_*(X:R) = d_*(X:R)$ is true for any compact space X.

Lemma 2. An n-dimensional compact space X is full-dimensional with respect to $Z(\mathfrak{a}_p)$ if and only if $d_*(X:\rho_1[p])=n$ for the prime p.

Proof. Let $U = \{\mathfrak{ll}_{\alpha} | \alpha \in \Omega\}$ be a cofinal system of coverings of Xsuch that the order of each \mathfrak{ll}_{α} is n. Suppose that X is full-dimensional with respect to $Z(\mathfrak{a}_p)$. There exists a pair (A, B) such that $0 \neq H_n(A, B : Z(\mathfrak{a}_p)) = \lim_{\leftarrow \to 0} \{H_n(K_{\alpha}, L_{\alpha} : Z(\mathfrak{a}_p)) : \Pi_{\alpha*}^{\beta}\}$, where (K_{α}, L_{α}) is the pair of the nerves of \mathfrak{ll}_{α} and Π_{α}^{β} is a projection of (K_{β}, L_{β}) into (K_{α}, L_{α}) for $\alpha \leq \beta \in \Omega$. Take a non-zero element $c = \{c_{\alpha} | \alpha \in \Omega\}$, where c_{α} is the α -coordinate of the element c. Since $H_n(K_{\alpha}, L_{\alpha} : Z(\mathfrak{a}_p))$ $\approx H_n(K_{\alpha}, L_{\alpha} : Z) \otimes Z(\mathfrak{a}_p)$, there exists an integral cycle b_{α} such that

⁶⁾ Prof. K. Morita pointed out that the homological dimension with respect to Q_p equals to the cohomological dimension with respect to R_p for every compact space. See [10, footnote 1)].

 $(\varphi_p)_*b_a = c_a$ for $\alpha \in \Omega$, where φ_p is a natural homomorphism of Z into $Z(\mathfrak{a}_p)$ defined by $\varphi_p(r) = \{\rho_k[p](r); k=1, 2, \cdots\}$ for $r \in Z$. Let $c_{\mathfrak{a}_0} \neq 0$. Let m be the positive integer such that the integral cycle b_β is divisible by p^{m-1} but not by p^m for each $\beta \ge \alpha_0$. Put $d_\beta = (1/p^{m-1}) \cdot b_\beta$, $\beta \ge \alpha_0$. There exists an element β_0 of Ω such that $\beta_0 \ge \alpha_0$ and d_{β_0} is not divisible by p. Since $(\rho_1[p])_*(\prod_{\beta_0})_*d_\beta = (\rho_1[p])_*d_{\beta_0} \neq 0$ for each $\beta \ge \beta_0$, this shows that $d_*(X:\rho_1[p])=n$. Conversely, suppose that $d_*(X:\rho_1[p])=n$. There exist a pair (A, B) of closed subsets and a covering $\mathfrak{U}_{\mathfrak{a}_0}$ of U such that $0 \neq (\rho_1[p])_*(\prod_{\mathfrak{a}_0})_*H_n(K_\beta, L_\beta:Z) \subset H_n(K_{\mathfrak{a}_0}, L_{\mathfrak{a}_0}:Z_p)$ for each $\beta \ge \alpha_0$. The group $H_n(A, B: Z(\mathfrak{a}_p))$ is the limit group of the inverse system $\{H_n(K_\beta, L_\beta: Z_{pk}) \mid (\rho_k^\beta[p])_*(\prod_{\mathfrak{a}})_*: \alpha < \beta$ and $k < j\}^{\gamma}$. Since $(\rho_k^j[p])_*(\prod_{\mathfrak{a}_0})_*H_n(K_\beta, L_\beta:Z_{pk})$ is a non-zero finite group for each $\beta \ge \alpha_0$ and k < j, we can conclude that $H_n(A, B: Z(\mathfrak{a}_p)) \neq 0$. Thus, X is full-dimensional with respect to $Z(\mathfrak{a}_p)$.

Lemma 3. Let X be an n-dimensional compact space. If $d_*(X: Z) = n$, then X is full-dimensional with respect to Q_q for a prime p.

Lemma 4. If a compact space X is full-dimensional with respect to $Z(\mathfrak{a}_p)$, then X is full-dimensional with respect to Q_p .

Since the relations $d_*(X: Z(\mathfrak{a}_p)) = \dim X$ and $d_*(X: Z) = \dim X$ are equivalent for any fully normal space X, it is sufficient to prove Lemma 3.⁸⁾ Let $d_*(X:Z) = n$. Since each non-zero integral cycle is a non-zero cycle mod p^k for some positive integer k, we have $d_*(X:$ $Q_p) = n$. Since X is a compact space and Q_p satisfies the descending chain condition, we can conclude that X is full-dimensional with respect to Q_p .

Lemma 5. An n-dimensional compact space X is full-dimensional with respect to Z_p if and only if X is full-dimensional with respect to Z_{pk} for $k=1, 2, \cdots$.

The proof is obvious. The following lemma is well known [1].

Lemma 6. Let (K, L) be a pair of n-dimensional finite simplicial complexes. Then there exist integral cycles Z_i and cycles Φ_j mod powers of p, of (K, L), such that the set $\{Z_i, \Phi_j\}$ forms a base of the group $H_n(K, L:Q_p)$; that is, for each cycle c of $H_n(K, L:Q_p)$ there exists a linear combination $\sum t_i Z_i + \sum s_j \Phi_j$ which is congruent with $c \mod 1$, where t_i and s_j are elements of Q_p .

§ 3. Proof of Theorem. (I) The sufficiency. By [10, Theorem 6], there exists a compact subset A of X such that $D_*(A:G) = \dim X$ in case X is full-dimensional with respect to G, where G is one of the groups $R, Z_p, Z(\mathfrak{a}_p)$ and Q_p . Thus, the proof is given by the same way as in the proof of [9, Theorem 1].

⁷⁾ Cf. [6, Theorem 5.1] or [8, Lemma 9] and [7].

⁸⁾ By Lemmas 1-4 and Theorem, we can prove Theorem 5 of [10] directly without making use of other theorems of [10].

No. 7]

(II)The necessity. We shall show that, if none of the conditions (1)-(4) hold, we have dim $(X \times Y) < \dim X + \dim Y$. By Hopf's extension theorem [11, Theorem 1], it is sufficient to prove that $H_{m+n}((A, B) \times (C, D) : R_1) = 0$ for each pair (A, B) and (C, D) of compact subsets of X and Y. Let $U = \{\mathfrak{U}_{\alpha} | \alpha \in \Omega\}$ and $V = \{\mathfrak{V}_{\gamma} | \gamma \in \Gamma\}$ be cofinal systems of coverings of X and Y such that the orders of \mathfrak{U}_{α} and \mathfrak{V}_{γ} , $\alpha \in \Omega$ and $\gamma \in \Gamma$, are *m* and *n* respectively, where $m = \dim X$ and $n = \dim Y$. Let (A, B) and (C, D) be any pairs of compact subsets of X and Y, (K_{α}, L_{α}) and (M_{γ}, N_{γ}) the pairs of the nerves of \mathfrak{U}_{α} and \mathfrak{B}_{τ} corresponding to them, $\Pi^{\mathfrak{s}}_{\mathfrak{a}} \colon (K_{\mathfrak{s}}, L_{\mathfrak{s}}) \to (K_{\mathfrak{a}}, L_{\mathfrak{a}})$ and $\psi^{\mathfrak{s}}_{\tau} \colon (M_{\mathfrak{s}}, N_{\mathfrak{s}}) \to$ (M_{γ}, N_{γ}) projections for $\alpha \leq \beta \in \Omega$ and $\gamma \leq \delta \in \Gamma$ respectively. Let p be a prime. Fix any elements α_0 and γ_0 of Ω and Γ . Let us denote by $G_{\alpha\gamma}$ the group $H_{m+n}((K_{\alpha}, L_{\alpha}) \times (M_{\gamma}, N_{\gamma}) : Q_{p})$ and by $\chi_{\alpha\gamma}^{\beta\delta}$ the homomorphism $(\Pi_{\alpha}^{\beta} \times \psi_{\gamma}^{\delta})_{*}$ of $G_{\beta\delta}$ into $G_{\alpha\gamma}$ for $\alpha_{0} \leq \alpha \leq \beta$ and $\gamma_{0} \leq \gamma \leq \delta$. Each cycle of $G_{\alpha\gamma}$ is written in the form $\sum q_{ij}^{\alpha\gamma}(Z_i^{\alpha} \times W_j^{\gamma}) + \sum r_{ik}^{\alpha\gamma}(Z_i^{\alpha} \times \Theta_k^{\gamma})$ $+\sum s_{hj}^{\alpha\gamma}(\Phi_h^{\alpha} \times W_j^{\gamma}) + \sum t_{hk}^{\alpha\gamma}(\Phi_h^{\alpha} \times \Theta_k^{\gamma})$, where Z_i^{α} and W_j^{γ} are integral cycles, Φ_{\hbar}^{α} and Θ_{k}^{r} are cycles mod powers of the prime p, $\{Z_{i}^{\alpha}, \Phi_{\hbar}^{\alpha}\}$ and $\{W_j^r, \Theta_k^r\}$ are basis of $H_m(K_{\alpha}, L_{\alpha}: Q_p)$ and $H_n(M_r, N_r: Q_p)$ respectively (cf. Lemma 6), $q_{ij}^{a\gamma}$, $r_{ik}^{a\gamma}$, $s_{hj}^{a\gamma}$ and $t_{hk}^{a\gamma}$ are elements of the group Q_p . Since the condition (1) is not satisfied, by Lemma 1, there exists either (a) an element α_1 of Ω such that $(\prod_{\alpha_0})_*H_m(K_\alpha, L_\alpha; Z)=0$ for any $\alpha \geq \alpha_1$ or (b) an element γ_1 of Γ such that $(\psi_{\tau_n})_* H_n(M_{\tau}, N_{\tau}; Z) = 0$ for any $\gamma \geq \gamma_1$. Let us assume that the case (a) holds. There is no loss of generality. Then, each element of the group $\chi^{\alpha_1 \gamma}_{\alpha_0 \gamma_0} G_{\alpha_1 \gamma}$ for any $\gamma \geq \gamma_0$ is written in the form $\chi^{\alpha_1 \gamma}_{\alpha_0 \gamma_0} (\sum s^{\alpha_1 \gamma}_{hj}(\Phi^{\alpha_1}_h imes W^{\gamma}_j) + \sum t^{\alpha_1 \gamma}_{hk}(\Phi^{\alpha_1}_h imes \Theta^{\gamma}_k)).$ If $\Phi_{h}^{\alpha_{1}}$ is a cycle mod p^{a} , we have $p^{a} \cdot s_{hj}^{\alpha_{1}\gamma} \equiv 0 \mod 1$ for each γ and j. Let b be the smallest positive integer such that $p^{b} \cdot s_{hj}^{a_{1}r} \equiv 0 \mod b$ 1 for each h, j and γ . Since the condition (4) is not satisfied, Y is not full-dimensional with respect to $Z(\mathfrak{a}_p)$ by Lemma 4. Therefore, by Lemma 2, there exists an element γ_1 of Γ such that each element of the group $(\psi_{r_0}^{r_1})_*H_n(M_{r_1}, N_{r_1}:Z)$ is divisible by p^b . Thus, each element of the group $\chi^{\alpha_1}_{\alpha_1\tau_1}G_{\alpha_1}$ is written in the form $\chi^{\alpha_1\tau}_{\alpha_0\tau_0}(\sum t^{\alpha_1\tau}_{hk}(\Phi^{\alpha_1}_h \times \Theta^{\tau}_k))$ for each $\alpha \geq \alpha_1$ and $\gamma \geq \gamma_1$. Since the condition (2) is not satisfied, at least one of the relations $D_*(X; Z_p) < m$ and $D_*(Y; Z_p) < n$ is true. Suppose that $D_*(X; Z_p) < m$. Let p^c be the order of the cycle $\Phi_h^{\alpha_1}$. Since the chain $t_{hk}^{\alpha_1\gamma}(\Phi_h^{\alpha_1} \times \Theta_k^{\gamma})$ is a cycle mod 1, we have $p^c \cdot t_{hk}^{\alpha_1\gamma} \equiv 0 \mod 1$ 1 for each k and $\gamma \geq \gamma_1$. Since there exists only a finite number of $\varPhi_{\hbar}^{lpha_1}$, we can find a positive integer d such that $p^d \cdot t_{\hbar k}^{lpha_1 r} \equiv 0$ for each h, k and $\gamma \ge \gamma_1$. By Lemma 5, there exists an element α_2 of Ω such that $0 = (\prod_{\alpha_1}^{\alpha_2})_* H_m(K_{\alpha_2}, L_{\alpha_2}: Z_{p^d}) \subset H_m(K_{\alpha_1}, L_{\alpha_1}: Z_{p^d})$. Then the group $\chi^{\alpha_2 \gamma_1}_{\alpha_0 r_0}(G_{\alpha_2 r_1})$ is zero. In case the relation $D_*(Y; Z_p) < n$ is true, we can prove similarly that there exists an element γ_2 of Γ such that $\chi^{\alpha_1 \gamma_2}_{\alpha_0 \gamma_0}(G_{\alpha_1 \gamma_2}) = 0.$ Since α_0 and γ_0 are any elements of Ω and Γ , this Y. KODAMA

shows that $H_{m+n}((A, B) \times (C, D) : Q_p) = 0$. Since $R_1 \approx \sum_p Q_p$, we can conclude that $H_{m+n}((A, B) \times (C, D) : R_1) = 0$. This completes the proof.

References

- [1] P. Alexandroff and H. Hopf: Topologie I, Berlin (1935).
- M. Bockstein: On the homological invariants of topological products, I, Trudy Moskov Mat. Obsc., 5, 3-80 (1956) (Amer. Math. Soc. Translations, ser. 2, 2, 173-385 (1959)).
- [3] —: On the homological invariants of topological products, II, ibid., 6, 3-133 (1957).
- [4] C. H. Dowker: Cech cohomology theory and the axioms, Ann. of Math., 51, 278-292 (1950).
- [5] E. Dyer: On the dimension of products, Fund. Math., 47, 141-160 (1959).
- [6] S. Eilenberg and N. S. Steenrod: Foundations of Algebraic Topology, Princeton (1952).
- [7] W. L. Gordon: On the coefficient group in cohomology, Duke Math. J., 21, 139-152 (1954).
- [8] Y. Kodama: On a problem of Alexandroff concerning the dimension of product spaces I, J. Math. Soc. Japan, 10, 380-404 (1958).
- [9] —: On a problem of Alexandroff concerning the dimension of product spaces II, ibid., **11**, 94-111 (1959).
- [10] ——: Homological dimension and product spaces, to appear.
- [11] K. Morita: H. Hopf's extension theorem in normal spaces, Proc. Physico-Math. Soc. Japan, 3rd ser., 23, 161-167 (1941).
- [12] —: On the dimension of product spaces, Amer. J. Math., 75, 205-223 (1953).
- [13] A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc., 54, 677-688 (1948).