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25. On the Unitary Equivalence of Normal Operators
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By Sakuji INOUE
Faculty of Education, Kumamoto University
(Comm. by K. KUNUGI, M.J.A., Feb. 13, 1961)

The purpose of this paper is to find a necessary and sufficient
condition for the unitary equivalence of normal operators in the
abstract Hilbert space § which is complete, separable, and infinite-
dimensional.

Definition. If we denote by M- the eigenspace determined by all
eigenelements of a normal operator N in § corresponding to the eigen-
value «, the projection operator of § on M is called the eigen-
projector corresponding to the eigenvalue a of N.

Theorem 1. Let N, and N, be normal operators in  such that
the sum of all eigenprojeectors of N, is identical with the identity
operator I for each value of 5=1,2. Then for the unitary equivalence
of N, and N, it is necessary and sufficient that N, and N, have the
same continuous spectrum and same point spectrum (inclusive of the
multiplicities of eigenvalues).

Proof. From the fact that the spectral classification of the points
on the complex plane for N, (inclusive of the multiplicities of eigen-
values) is invariant under the unitary transformation UN,U ! for any
unitary operator U, it is clear that the condition given in the theorem
is necessary; hence it remains only to prove the sufficiency of the
condition.

Let {¢®} be an orthonormal set of all eigenelements of N,; let
{t.} and 4 be the common point spectrum and common continuous
spectrum of N, and N, respectively; and let {P,(2)}, {E,(2)} and {F,()}

be the spectral families of N, the self-adjoint operators H. ,_——(N 1 +N¥)
and K ,———(N ,—N}) respectively. Then, by hypotheses, {¢P} and

{¢®} are complete orthonormal sets respectively and can be put in
one-to-one correspondence in such a way that corresponding elements
are eigenelements for N; and N, respectively, corresponding to the
same eigenvalue; and in addition, since the residual spectrum of N;
is empty and since the spectral representation of N, vanishes on the
resolvent set,

N=3LP"+ [2dP(2), H=SR@)PP+ f R(2)dP,(z),

4
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K,=318()P"+ [P 2),

4
where P{™ denotes the eigenprojector of N, corresponding to the eigen-
value [,, each of the three projection-integrals vanishes by virtue of
the hypothesis 3} P{® =1, and

P =[E,R(,)—E (R(,) —0)1[F,(3(1.) — F(3(,)—0)]

(1) =E,(R(L,)—E,(R(l,)—0)=F(3(.,) — F(3(,)—0),
(j=1, 2;, n=1,2,-- ’)9

as can be easily verified from the respective spectral representations
of N;, H, and K, with respect to {P,(2)}, {E,(4)} and {F(¢)}. It follows
therefore that the point spectra of H, and K, are given by {%(l,)} and
{3(,)} respectively and that {¢%’} is not only an orthonormal set of
all eigenelements of H, but also that of K,. In consequence, accord-
ing to a well-known theorem concerning the unitary equivalence of
self-adjoint operators, there exist unitary operators U and V such that
the equalities H,=UH,U! and K,=VK,V~' hold. These results
permit us to assert that

f R(2)dP,(z) = f R()A[UP(Z)U ]
=3 (1) ULER(,)) — Eu(1,) — )] LFAS(.) — Fy 30— 01U,

where G denotes the complex z-plane, and that similarly
[3@ar.@
2]

=23 () VLER() — Ex(R(L) — 01 [Fo(3(.) — F(3U)—0)]V .
On the other hand, the equality H,=UH,U"! implies that E\(1)
=UEyA)U!, —co <1<, and hence that
(2) El(ﬂf(ln))—El(ﬂ?(ln)—O)= ULE.(R(.)—ER(,)—0)]U,
and similarly the equality K,=VK,V-! implies that
(3) FiR))—FiB()—0)=V[Fy(3(.)—F(3()—0)] V.
Moreover, by applying (1) to (2) and (8) we obtain
ULE:R(,)—E(R()—0)][F(3(.)— Fx(3(,)—0)]U
=V[E®R(1,)—E®R(1,)—0)][FA3()—F(3(1)—0)IV™!, n=1,2,---
These results established above lead us to the conclusion that

N,= f R(2)dP,(2)+i f S@)dPy(2)
=2l U[E'z(iﬁ(l»)) E2(2R(ln)_‘0)] [F(3()—Fu(3()—0)]U
= f 2d[ UP,(z)U~"]

=UN,U.
The given condition is therefore sufficient.
Corollary 1. If N, and N, are compact normal operators in 9,
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then for the unitary equivalence of N, and N, it is necessary and
sufficient that N, and N, have the same continuous spectrum and same
point spectrum (inclusive of the multiplicities of eigenvalues).

Proof. Since, by hypothesis, an orthonormal set of all eigen-
elements of N, is complete in § for each value of j=1, 2, the present
corollary is a direct consequence of Theorem 1.

Corollary 2. Let N, and N, be non-compact normal operators in
$. If there exist a non-zero complex number «a, positive integers p;,
and complete orthonormal sets {¥%?}, 7=1, 2, such that

;:”(Nj—aI)pf\lrf;””z< o, j=1,2,

then the same assertion as that stated in the preceding corollary holds.

Proof. Since, by hypotheses, it is verified without difficulty that
N,—al is a compact normal operator for each value of j=1,2, the
present corollary follows at once from Corollary 1.

Theorem 2. Let N; and N, be normal operators in § such that
the sum of all eigenprojectors of N; is less than the identity operator I
for each value of j=1, 2; let {¢®} be an orthonormal set of all eigen-
elements of N, let {E,(2)} and {F,(#)} be the spectral families of

H,=-;—(N,+N;) and K,:%,-(N,—N,*), §=1,2, respectively. Then for

the unitary equivalence of N, and N, it is necessary and sufficient
that

(i) N, and N, have the same continuous spectrum and same point
spectrum (inclusive of the multiplicities of eigenvalues);

(ii) there exists a unitary operator U such that, for each value
of v=1,2,---, Up® is an eigenelement of N, for the eigenvalue of N,
corresponding to ¢$;

(iii) for any element f belonging to the orthogonal complement
N, of the subspace M, determined by {¢$®} the relations
(4) | E2)f ||=| B US|,

(5) | Fo(e) f [|=1| F(e) US|
hold on the common continuous spectrum of H, and H, and on that
of K, and K, respectively.

Furthermore N,=U"!N,U for such a U as above.

Proof. Suppose that there exists a unitary operator U satisfying
the condition N,=U-'N,U. Then it is first clear that (i) is satisfied;
and moreover there is no difficulty in showing that (ii) holds. If we
now use the symbols {P,(z)}, 5=1,2, and G defined before, then from
the spectral representations of N, and U-'N,U and from the unique-
ness of the spectral family associated with a normal operator, we find
at once that P,(2)=U"'Py(2)U on G and hence that
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U H.U= f RE@A[UP(AU]= [R@IP()=H,
-] ‘@

The last relation implies that E,())=U'E,(A)U on the interval
(— o, ). In an entirely similar manner, we see that Fy(u)=U"'F,(x)U
on (—oo, ). Hence (4) and (5) both hold on (— o, ). In addition,
it is evident that H, and H, have the same continuous spectrum and
that the same is true of K, and K,. The condition given in the
statement of the present theorem is thus necessary for the unitary
equivalence of N, and N,.

Conversely we shall now suppose that the chain of conditions (i),
(ii), and (iii) is satisfied.

If we denote by {l,} the common point spectrum of N,, j=1,2,
as before and if, by (ii), we suppose that Up® and ¢ are eigen-
elements for N, and N, respectively, corresponding to an arbitrarily
given eigenvalue /,¢{l,}, then we see readily that N,p®=U-'N,U¢®.
This relation yields the result that
(6) N=U"'N,U on MND(N,),
where D(N,) denotes the domain of N,.

We shall prove below that N;=U"'N,U on R, D(N,).

Since, by (i), clearly H, and H, have the same continuous spectrum,
we denote it by 4(H) and express symbolically by z>d4(H) (or by
4(H)<x) the relation between 4(H) and an arbitrary point z on
(—o0, ) such that é¢<z for every &ed4(H). Then from the fact
that E,(R(l,))—E,(R(l,)—0) is the eigenprojector of H, corresponding
to the eigenvalue R(l,) it follows that, for x> 4(H),

IB@F = [AIE@SIF  (feR)

= >0, |[LER ()~ B (L) —O0)1f P+ lj;deIEz(Z)fII”

= [ AIBWS I,
where m(%}s’ den;(tz)s the sum for all eigenvalues R(l,) of H, such
that R(l,)<z, while

1£1= [ el B (F eRy)
(") = 53 ILER()— B —0)1f P+ ImduE,(z)fuz
= [ dIE®DS I,
4(H)

where s%}o denotes the sum for all R(l,). As a result, we obtain

| Ex(x)f|E=|| F]I* for every x>A4(H) and for any feM,. On the other
hand, as can be found immediately from the above reasoning, the
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relation || E,(x)f|[*=0 holds for every x<4(H) and for any feN,. We
next consider a point xe(— oo, o) such that 4'<zx<4” or 4'<z<4”
where 4'U4"=4(H) and 4'<x denotes that (4'—x)<xzecd'. Then, for
the points z,{ with 4'<{< 4" and for feN, we have

IE@S = [AEQL = [ UEDS P=IEOS |-
In addition, by making use of (4) and (7) we have
1£1= [TAUNB@DTAF (£t

= 3 B @)~ B -010F |+ [ dIE@UFIF
" am)

= 25 ILE(R )~ E R —OTUS I+ AP
Cn)

and hence [E,(R())—E,(R(1,)—0)]Uf=0, (n=1,2,---).

Since the final relations show that Uf, (feMN.), belongs to the
orthogonal complement N, of the subspace determined by all eigen-
elements of N,, we can verify with the help of the same reasoning
as above that

A1 (z>4(H)),
[ Ey(x)US|*=4 0 (z<4(H)),
EQUSI|? (4 <z<d”, or A <z<d"; 4<L<4").

Consequently the condition that the relation (4) holds on 4(H)
implies that it holds on (— oo, o0).

In an entirely similar manner we can find that, if the relation (5)
holds on the common continuous spectrum of K, and K,, it holds on
(— o0, ). Accordingly the relations
(8) (B()—UE@)U) S, £)=0 } (f eRy)

(9) (F)— U Fy () U) S, f)=0)" '

are valid for every A, ue(— o, ). Moreover we can prove as below
that both (E.,(Q)—U'E,QU)f and (F(¢)— U 'F\(x)U)f, where 2, u
€(—o0, ) and feMN, belong to N, and then that both Ey(2)
=U"'E,Q)U and Fy()=U""'F,(z)U hold on N, D(N,).

In the first place, by virtue of the fact that f dE,(2) is the

4(H)
projector of  on N, we have for every z>4(H)

E@f= [ dBWf= [ dBDf=F (fet),
and for every w<A(H)-w o

E@)f= [[dBMf=0 (fei).

We next consider such a point x with 4'<x<4"” (or with 4'<z
<4") as described before. Then
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4
E@f= [ dBWf=[dBDF (feR),
—o0 4’
where 4'<{ < 4". Since, in addition, f dE,(2) is a projector permutable

"
with dE,(2), and since [ dE,(2)- | dE,(Q)= | dE,(2), | dE(Q)<
L, Jor | wmo=[ame, [
f dE,(4), that is, f dE,(2)-9CN,. We find from these results that

4(H) 47
E(A)f belongs to N, for every ie(— =, ) and for any feR,.

Remembering that Uf, (feR,), belongs to N,, we can easily find
by similar reasoning that U-'E,(A)Uf belongs to R, for every Ae(— oo,
o) and for any f€M,. Thus we find that (E,(1)— U 'E,()U)f belongs
to N, for every 1e(— oo, ) and for any feR,.

On the other hand, if for brevity of expression we denote by T
the self-adjoint operator E,(2)— U 'E,(2)U, the relation

(g, ={(T L, 9th)_(7o-h 9-h)
2 2 2 2
+i{(T g-+ih ’ g+ih >—(T g—1h i g—ih )}
2 2 2 2
holds, in general, for every pair of elements g,he$. Applying this
relation to (8), we obtain the relation E,(1)=U'E,(A)U holding on R,
for every i1€(— o, »), because of the facts that ((E;()— U 'E,(2)U)
g, h)=0, — oo <2< oo, holds for every pair of g, heR, and (E,())—U!
XE(AQ)U)g, —oo<i< oo, belongs to N, for every geN,. The final
relation implies that H,=U"'H,U on N, D(N).

Moreover, by reasoning entirely like that used to (8) we can
establish the relation K,=U-'K,U holding on RN.ND(N;); and the
last two relations imply that
10) N;=U"'N,U on R;NO(N,).

Since H=M,DN,, the relations (6) and (10) enable us to conclude
that N,=U"'N,U on D(N,); hence the condition given in the present
theorem is sufficient for the unitary equivalence of N, and N.,.

Remark. Combining (4) and (5), we have the relation

| Po(2)f ||=| Py(2) US|
holding on the common continuous spectrum of N, and N, for every
SfeTty; and the case where the point spectra of N,, j=1, 2, are empty
is trivial.




