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35. Decomposition of Kronecker Products of Representations
of the Inhomogeneous Lorentz Group

By Nobuhiko TATSUUMA
Department of Mathematics, University of Kyoto
(Comm. by K. KUNUGI, M.J.A., April 12, 1962)

We shall consider irreducible decompositon of the Kronecker
products of unitary representations of the proper orthochronous in-
homogeneous Lorentz group which we shall denote by G. In the
present paper we give explicit solution of this problem, except some
cases. Our method is based on the theory of induced representation,
which was considered by G. W. Mackey [1]. The details of the
results will be reported in another paper.

§ 1. It is known that all irreducible unitary representations of
G are classified in the following types.

a) D%). Let H be the homogeneous Lorentz group. We can
consider it the factor group of G by the real four-dimensional vector
subgroup N of G. We can define canonically an irreducible repre-
sentation ©°%(¢) of G from an irreducible representation ¢ of the
factor group H. ¢ is characterized by a pair of parameters (s, t),
according whose values ¢’s are classified into three series. (i) Principal
series: s is a non-negative integer, ¢ is pure imaginary. (ii) Supple-
mentary series: s=0, 0<t<1. (iii) Identity representation: (s,t)=(0,1).

b) D% (p,b). Consider the three-dimensional rotation group R,
which is a subgroup of H. Its irreducible representation p=p(m)
is decided by the highest weight m, which is a non-negative integer.
We choose a character y(x)=exp (¢bx,) (b3:0) for the element
x=(2%,, Ty, %3, %,) of N, and construct a representation of RN as the
product of p(m) and x(x), and lastly we induce a unitary repre-
sentation D'(p, b) of G from this representation of RN. Then D'(p, b)
is irreducible.

c¢) D*2,¢). In the case b), we replace R with the three-dimen-
sional proper Lorentz group L, the representation p of R with an
irreducible representation A2 of L and the character exp(ibx,) of N
with exp (icx,) (¢>0) respectively. Then the induced representation
D¥4, ¢) from exp (icx,)A of LN is irreducible. There are four series
of irreducible representations 1 of L: (i) Principal series: 2* (1/4<1).
(ii) Supplementary series: 2* (0<l<1/4). (iii) Discrete series: 2,
(p==1, x£2,--.). (iv) Identity representation: I.

d) Dk, +) and D%k, —). We employ the motion group M over
two-dimensional Euclidean space as the third subgroup of G, and let &
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be an irreducible representation of M. Let Dk, +) (resp. D(x, —)) be
the induced representation of G from the representation exp (4(x; +2,))x
(resp. exp (—i(x,+,))x) of MN. « belongs one of following types.

i) x,(m: integer). A character exp (imf) of the rotational
subgroup of M defines canonically an one-dimensional representation
of M, which we denote by «,. ii) £, (0<p<c). Let exp (ipr,) be a
character of the subgroup of translations in M which are parametrized
by (7, 7,), and £, be the induced representation of M from exp (ipry).

§2. In virtue of the symmetry of Kronecker product, the
representation N, ®N, is unitary equivalent to R, Q@ N, for two repre-
sentations N, N, of G, so it is sufficient to consider only one of
these two types of product. Under this consideration, our results
are as follows.

I) D)®D(r). In this case the representation to be decom-
posed is nothing else the representation of G defined canonically by
the representation ¢®z of H, and its decomposition is essentially
equivalent to decompose Kronecker product of representations of the
homogeneous Lorentz group H. This problem is solved completely
by M. A. Naimark in the series of his works [2].

II) D%a(s, 1)) @D (p(m), b)=>[w(s, t, m, n)]D'(e(n), b), where

w(s, t, m, n) is the function defined as follows, and the brackets [ ]
means the multiplicity of the succeeding component.
For (s, t)=(0,1), w(s, t, m, n)=2m—+1, (if n>m+s); =m—s+n+1, (if
m+s>n>|m—s|); =2s+1, (if m—s>n>0); =0, (otherwise).
And w(0, 1, m, n)=4.
) R=D(c) DY, ¢).

i) When ¢ is a representation of the principal series, we have

the following formula:
=S4, 5, 1D, ) O[] [ DR, 0) .

1/4
where w(2, s, ¢)= .

w(4y, 8, @)=c0, (if pg>0); =s—|p|—|q|+1, (if pg<0, and
s—|p|>]q|>0); =0, (otherwise).
w(l, s, q)=1, (if s>|q[>0); =0, (otherwise).
v()=2, (if 2=1); = oo, (otherwise).

ii) When ¢ is the identity representation, then

R=TR D*(1, ¢) = D1, ¢).

iili) When ¢ is a representation of the supplementary series, the
problem is unsolved.

IV) R =D%)® D%k, +) and R-=(c) ® D*(x, —).

If 6=1, it is trivial. Hence let ¢%=1. Then

Sz [ O, F)do,  N-= [ Dt —)dp, (if k=r,).
/ /
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we=[eo] [V, o, R-=[e0] [TV, <)dp, (i 5=,
0 0

For cases V)—IX) of the remaining cases the results take similar
forms, which are expressed in the following general formula:

a(2) N pCE+1)
R=31u] [ D), HdsOT S0 [ D3, 9)ds
= o=t [
M r(k+1) o
DS [w(k)] ds | DX, s)ds.
i o
So it is sufficient to determine the multiplicities and the intervals
of the integrals in each case.

V) R=D(p(m), b) @ D'(p(n), bs), (Mm=n).

i) When bb,>0, u=u(m,n,h)=2n+1)(2h+1), if 0<h<m—n);
=2m+1)2n+1)—(m+n—h)(m+n—h+1), (if m—n<h<m-+n);
=2m~+1)2n+1), (if m+n<h).

(a(1), a(2) = (b, +s, (sign b)oo) or ((sign by)oo, b,+by).
And v=w=0.

ii) When b,b,<0, u=u(m, n, k) as in the case i), and (a(1), a(2))
=(0, b,+b,) or (b,+b,,0).

N=M=1, and v(1)=v(m,n,q)=(1/2)(m+n—|q|+1)(m+n—|q|+2),
(if m—n<|g|<m+n); =@n+1)(m+|q|+1), (f 0<|g|<m—n); =0,
(otherwise).

w(l)=w(m, n)=Cm-+1)(2n-+1).

(B(1), B2)=(r(1), 7(2))=(0, ).

VI) RN=D*2, ) @D (p(m), b).
For 1=2, u=u(m, h)=Cm-+1)(2h+1).
For 1=2,, u=u(p, m, h)=Cm~+1)(h—|p|+1), (if |p|+m<h);
=1/2)(h—|p|+m+2)(h—|p|+m+1), (if max (m—|p]|, 0)<h<p+m);
=(2h+1)(m—|p|+1), (if 0<h<m—|p|).
And u(I,m, h)=2m+1, (if m<h); =2h+1, (if 0<h<m).
(a(1), (2))=(0, (sign b)oo) or ((sign b)co, 0).

N=M=1, and for 1=2", v(1)=oo.
For 12=12,, v(1)=v(m, @)=, (if pg>0); =(1/2)(m—|p|—|q|+2)X
(m—|p|—lq|+1), (if pg<0,0<|g|<m—]|p[); =0, (otherwise).
v(I, m, @)=m—|q|+1, (if 0<|q|<m);=0, (otherwise).
For 231, w(l)=o0; and w(I, m)=2m-1.

(B(1), B(2)=(r(1), 7(2))=(0, o0).

VI) Re=D(k, +) XD (o(m), b). (resp. R-=D(x, —) DD(o(m), b)).

i) 5>0. (resp. b<0).
For r=«", u=u(m, h)=(2m-41)(2h+1).
For k=x,, u=u(n, m, h)=2m+1, (if m+|n|<h); =m—|n|+h+1, (i
max (0, m—|n|)<h<m+|n|); =2h+1, (if 0<h<m—|n|).

(a(1), a(2))=(b, ). (resp. (—o,b)). And v=w=0.
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ii) b5<0. (resp. b>0).
uw=u(x, m,h), as in the case i).
(a(1), a(2))=(b,0). (resp. (0, D)).
N=M=1, and for x=«", v(1)=co.
For k=x,, v(1)=v(n,m,q)=m+n—q+1, (if max (n—m,1)<g<m+n);
=m—n+q+1, (if n—m<g<min (m+mn, —1)); =0, (otherwise). (resp.
=m+n+q+1, (if max(n—m, 1)< —g<m+n); =m—n—q+1, (if
n—m< —qg<min (m+mn, —1)); =0, (otherwise)).
For k=¢", w(l)=o0, and w(k,, m)=2m+1.
(B(1), B(2)=(r(1), 7(2))=(0, o).
VIII) R=D*1, ¢;) @D¥ (g, ¢).
For (2, )=(2, ) or (%, 1,) or (2,, 4, (pr>0)), u=oco.
For (1, I), u=u(h)=2h+1; and for (2,, 4, (pr<0)), u=u(p, r, k) =(1/2) X
(h—|r—p|+2)(h—|r—p|+1), (f [r—p|<h); =0, (otherwise).
For (1,, I), u=u(p, k)=(h—|p|+1), (if |p|<h); =0, (otherwise).
And for ([,I),u=1.
(a(1), a(2))=(—o0, o).
N=3, and for (2, £)=(2, 2") or (2, 2,) or (2, 2, (pr>0)) or (', 1I),
(1) =co,
For (2, )= (4, 2, (pr<0)) or (2,, I), v(1)=v(p, @)= oo, (if (¢;—c2)pg>0);
=0, (otherwise), for (I, I), »(1)=0.
For (4, #)(, I), v(2)=o0; and for (I, I), v(2)=0.
For (2, )=, ) or (&, 2,) or (1, 4, (pr<0)) or (&, I), v(3)=oo; and
for (2,, 2, (pr>0)) or (2,,I), v(8)=v(p, @)=, (if pg>0); =0, (other-
wise). For (I, I), »(3)=0.
(B(1), B(2), B(3), B(4))=(0, | e;—c., ¢, +¢y o).
M=1, and w(1)=2, (if (1, ©)=(, I)); = oo, (otherwise).
(r(1), 7(2))=(0, o).
IX) i) RN, =D, +)XD*1 ¢).
For (x, )=(x*, 2") or («°, 2,), u=o0; and for («°, I) or (k,, 1Y),
u=u(h)=2h+1; for (x,, I), u=u(h)=1, (if m<h); =0, (otherwise).
For (&, 2)=(kn, 2,), u=u(m, p, h)=2h+1, (if 0<h<|p—m/|, and
p(p—m)<0); =h+14|p—m|, (if |[p—m|<h); =0, (otherwise).
(a(1), a(2))=(— oo, 0).
N=2, and for (x, )=(x",2") or («*, 2,) or (&*,I) or (k,, "), v(1)=oco.
For (k, )=(km 4,), v(1)=v(m, p, Q)=co, (if pg>0); =|p—m-+q|+1,
(if |p—m|>|q|>1, pg<0, p(p—m)<0); =0, (otherwise).
For (kn, I), v(1)=v(m, ¢)=1, (if 1<|q|<|m|, mg<0); =0, (otherwise).
For (x*, 2") or (x*,2,) or (x*,I) or (k,, 2"), v(2)=oo.
For (ku, 4,), v(2)=v(m,p, @)=o0, (if pg>0); =|p+m—q|+1, (if | p+m|
>|q|>1, pg<0, p(p+m)<0); =0, (otherwise).
For (x,,I), v(2)=v(m, ¢)=1, (if 1<|q|<|m|, mg>0); =0, (otherwise).
(B(1), B(2), A(8))=(0, ¢, o).
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M=1, and w(1)=1, (if (¢, 2)=(km, I)); =0, (otherwise).
(1), 7(2)=(0, ).
ii) N_ =%, —)QD*(1, ¢).
For (&, A)=(x*, ) or (s*, 2,), u=o0, and for («*,I) or (x,, A"), u=u(h)
=2h+1,
For (kn, 4,), u=u(m, p, b)=h+|p+m|+1, (if |[p+m|<h); =2h+1, (if
0<h<|p+m|, p(p+m)<0); =0, (otherwise).
For (¢, I),u=u(m, h)=1, (if m<h); =0, (otherwise).
(a(1), «(2))=(0, o).
N=2, and for (¢, )=(x", ") or (s, 2,) or (x*, I) or (x,, 1), v(1)=co.
For (k,, 2,), v(1)=v(m, p,q)=o0, (if pg>0); =|p+m—q|+1,
(if |p+m|=[q|=1, pg<0, p(p+m)<0); =0, (otherwise).
For (k,, I), v(1)=v(m, q)=1, (if 1<|q|<|m|, mg>0); =0, (otherwise).
For (x,2)=(x*, 2") or (x*,4,) or («,I) or (k,,2"), v(2)=o, and for
(ky 4)y v(2)=v(M, P, q)=00, (if pg>0); =|p—m—q|+1, (if |p—m|
>|q|>1, pg<0, p(p—m)<0); =0, (otherwise).
For (k,, I),v(2)=v(m, q)=1, (if 1<|q|<|m|, mg<0); =0, (otherwise).
M=1, w(l)=w(x, 2), (r(1), 7(2)), as in the case i).

X) Do 1)@V, +)= [e0] [ 0, +)dp,
Do, POV, =)= [eo] [ Ve, H)dp D [eo] [ D, —)d,

D, 2)O D6, =)= [e0] [ Ve, —)d.

§ 3. Besides the above considered ordinary representations, there
are so-called spinor representations of G. In the same way, we can
treat the Kronecker products of two spinor representations or of
a spinor representation and ordinary one. It is easy to obtain very
analogous results, in which instead of integers half-integers appear
and play important roles as the number denoting the kind of represen-
tations. We leave the details about these problems to another paper.
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