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On the Behaviour of Analytic Functions on the
Ideal Boundary. II

By Zenjiro KURAMOCHI
Mathematical Institute, Hokkaido University

(Comm. by K. KUNUGI, M.J.A., May 12, 1962)

In the previous paper) with the same title we discussed the
theorems of Fatou and Beurling in case where the basic surface is the
w-Riemann sphere. In the present paper we consider them when the
basic surfaces are also abstract Riemann surfaces. Some results
contained in this paper is the same one obtained by C. Constantinescu
and A. Cornea.) All proofs) of Fatou’s theorem (and that of Constan-
tinescu and Cornea) depend on the following Lebesgue’s theorem: "A
function of bounded variation has derivatives almost everywhere".
We shall prove the Fatou’s theorem and Beurling theorem (in extended
form) by using only the potentials and the behaviour of the covering
surface of an analytic function w-f(z) without the above Lebesgue’s
theorem. And we shall show that the above two theorems can be
proved by the same manner. We denote by w-f(z)’zeR and we__R
an analytic function from R into __R.

Let R (n 0,1, 2, be an exhaustion with compact relative
boundary 3Rn. We suppose that R is a metric space such that the
topology induced by this metric is homeomorphic to the original
topology (induced by local parameters) of R when it is restricted in R.
We have the ideal boundary B of R by the completion of R with respect
to the above metric. Then R--R+B is closed. In the following
distance, closed sets, etc., are ones with respect to the metric on R.
Put Bn--E zR’dist(z,B) Let C(r, 19) be a circle" C(r,19)
--E.[z e R" dist (z, p)r, peR. Suppose that R is a Riemann surface
with positive boundary. Put [2_=E[zeR" w(3C(r, p), z)l--e. If
lira w([21_C(rl, p)B, z)--O for r2rl, we call the topology an H. S.
$-0

(Harmonically Separative) topology, where w(Y2_C(r,p))B,z) is
H.M. (Harmonic Measure)) of /2_ ) C(r, p) ) B.

1) On the behaviour of analytic functions on the ideal boundary. I, Proc. Japan
Acad., 38, 150-155 (1962).

2) C. Constantinescu and A. Cornea: ber das Verhalten der analytischen Ab-
bildungen Riemannscher Flichen auf dem idealen Rand yon Martin, Nagoya Math.
Journ. (1960).

3) For instance S. Lojasiewicz: Une dmonstration du theorem de Fatou, Annales
de la socit polonaise de mathmatique, 22 (1950).

4) Notations and terminologies are to be reffered to "Potentials on Riemann surfaces"
and "Singular points of Riemann surfaces", Journ. Faculty of Science, Hokkaido Univ.
(1962).
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Suppose C. P. (Capacitary Potential) of C(rl, p) B, w(C(rl, p) B, z)
>0, where o(C(r, p) B, z)=lim w(z) and w(z) is a harmonic function

in R--Ro--(C(r,p)Bn) such that wn(z)---=0 on 3Ro, wn(z)-I on

C(r, p)B and w(z) has M.D.I. (Minimal Dirichlet Integral). If there
exists an increasing sequence of domains {Vn} such that o(C(r,p)
CV B, z) O, o(C(r, p) V, z) > 0 as n- and that there exists

at least one continuous function Un(z) in C(m, p)--(C(r, p) Vn) such
that Un(z)-I on (VnC(r,p)), Un(z)=O on C(r., p) and D(Un(z))<
for every n, we call such a topology a D.S. (Dirichlet Separative)
topology. If R is a Riemann surface with null-boundary, clearly
o(C(rl, p) B, z) 0.

Topologies on Riemann surfaces. 1). Stoilow’s metric. R--Rn
is composed of a finite number of disjoint non-compact surfaces G.
Let Gn (n=1,2,...) be a sequence of non-compact surfaces with
compact relative boundary such that GnGn+,’", Gn-O. Two
sequences [G} and [G} are called equivalent if and only if for any
given number m there exists a number n such that GG. and vice
versa. We make correspond an ideal boundary point p (component)
to the class of equivalent sequences (which corresponds to neighbour-
hoods of p) and denote the set of all boundary points by B. A metric
can be introduced on R+B. It is clear that R/B and B are compact
and B is totally disconnected and that the topology by this metric
is homeomorphic o the original topology in R.

2). Martin’s topologies2 Let R be a Riemann surface with
positive boundary (if R is a surface with null-boundary, consider

R--Ro as R). Then K-Martin’s topology can be defined on R+B and
N-Martin’s only on R--Ro+B. Above topologies are homeomorphic
to the original topology in R--Ro. We extend them into R0. In this
paper we suppose that Martin’s topologies are defined on R/B.

3). Green’s metric. Let R be a Riemann surface with positive
boundary (if R is a surface with null-boundary, we consider R--Ro
instead of R). Let G(z, p) be a Green’s function. Let be a curve in

R. We define the length of by .j-d[e-(z’P)-z’P)[, where h(z, p)is

the conjugate function of G(z,p). For two points Pl and p. of R
dist(p, p.)is defined by the infinimum of the length of all curves
connecting p with p in R. Now all boundary points s.re defined by
the completion of R with respect to this metric. It is clear that
R+B and B are closed but not always compact. If this topology is
defined only on R--Ro+ B, we continue this into R0 as Martin’s topology.

Theorem 2. Let R be a Riemann surface with positive boundary.

5) This is equivalent to D(’,(VnNC(rl, p), C(r., p)))<:.
6) See 4).
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Then Stoilow’s, Green’s, N and K-Martin’s topologies are H. S. topo-
logies. And Stoilow’s, Green’s, and N-Martin’s topologies are D.S.
topologies.

1). For Stoilow’s topology. Since B is totally disconnected, we
can find an open set G with compact and analytic relative boundaries
3G such that C(rl,p)GC(r2,p) and 3GB=O. Clearly w(3C(r2,p),z)
w(3G, z) in G. Let G(z,p) be a Green’s function with pole in

R--C(r, p). Then min G(z, p)-3>0. Hence w(3G, z) G(z, p) in

C(rl, p). But w(/2 B, z)=0:7) [2--EzeR G(z, p) > s. Hence
w(9_BC(r,p),z)=O for l--s>0 and Stoilow’s topology is H.S.
(harmonically separative). Suppose CVn---O. AS above we can find
two domains G and G with analytic relative boundaries such that
C(r, p)GIGC(r, p) and 3GB=O and 3GI3G=O. Now we
can easily construct a harmonic function in G-G such that U(z)=0
on G., U(z)=l on 3G1 and D(U(z))< . Put U’(z)=0 in C(r, p)--G2,
U’(z)=U(z) in G2-GI and U’(z)=l in GC(r, p). Then U’(z) is the
function required and Stoilow’s topology is D.S.

2). For Green’s topology. Map the universal covering surface
R of R onto I$1 1 by z=z($). Then z($) has angular limits with
respect to Green’s topology8) a.e. (almost everywhere) on ]$1=1
(Original Fatou’s theorem is used for this assertion). Let B be the
image of B3C(r, p). Then w(3C(r., p)B, z)--0 a.e. on the image of
C(r, p) B by dist(3C(r2, p), C(r, p)) > O. Hence we can prove similarly
as the proof of Lemma a’) w([2_C(rl, p),z)=0 for 1-->0. Thus
Green’s topology is H.S. Let G(z, p) be the Green’s function (used
for Green’s metric). Put (z)=exp(G(z, p)+ih(z, p))=re. We cut
R along the trajectries (h(z, p)=const) so that (z) may be single
valued. Then R is mapped onto the domain D with enumerably
infinite number of radial slits and z=z() can be continued analytically
along radii from =0 to I1=1 except possibly a set of 0 of angular
measure zero2 Let (p) be the image of p on D. Now (p) may
consist of infinitely many points. Let z-(C(r, p)) be the image of
C(r, p). Then z-(C(r, p)) is a domain (consisting of infinite)number
of components in D). Let p and p. be two points of R/B. Then
dist (p, p) is the infinimum of all curves connecting p with p.
But the length of a segment on R is the euclidean length of the
image (consisting of infinitely many components) z-(l) of 1. Hence

7) Z. Kuramochi" Singular points of Riemann surfaces.
8) Z. Kuramochi" Dirichlet problem on Riemann surfaces. IV, Proc. Japan Acad.,

30, 946-950(1954).
9) Z. Kuramochi" Harmonic measures and capacity of sets of the ideal boundary.

II, Proc. Japan Acad., 31, 25-30 (1955).
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1" ds-(d$+d)’--$+i.-re. Put g(z)-l-- dist (z, p)--rl in

C(r., p)--C(r, p), g(z)--O in R--C(r, p) and g(z)-l in C(r, p). Then
g(z) is continuous and

Put CV-O. Then (z) is the required funetion. Hence Green’s topo-
logy is D.S.

8). o N-Margi’ topology. Put G-C(,p) and ut D_
=N[R" (OG, z)> 1-s. Assume lim(D_C(, )B,z)--*(z)>O.

hen *()-- [ N(z, p)g() and by Theorem 18 of p0 we have

by dist(CG, C(, p))>0 *(z)>c (z), where (z) is the function
such that a*()-*(z) on CG and a*() has .D.I. over G. Put
’(z)-*(z)--a*(z) and M=su’(). Since *()and *(z) are

harmonic in C(, p)--(C(, p)D_)-- V" V=N R" ’(z)>
by the maximum rineile

Dn _ DC(r , p), z).

If (o(V2_C(r,p),z)-O held, sup(o*(z)-M-M. This is a contra-
2

diction.
Hence lim w(V [2_ C(r, p), z) > O.

$-0

Next by the Dirichlet principle
D(o(V[2_e(r, p), z)) D(w(V[2_C(rl, p), z, C(r2, p))

D(2o’(z) )< because 2w’(z) :>1 in V and 2w’(z) =0 on 3C(r., p).
M M M

Hence lim w(V2_C(r, p), z, C(r2, p))-w**(z)>0.

Clearly o**(z)(o*(z). Consider the regular niveau curves of o**(z).
Then we have similarly as C) of Theorem 12 of P

D((o**(z))--6ofw*(Z)n W**(z ds- fw*(z)-nW**(z ds
C CI_

f< w**(z) n **(z) ds--(1--z)D(w**(z))
CI--

for a constant o>0 and for any constant s>O.

This contradicts o**(z)w*(z) for < 0.
2

Hence

10) We abbreviate "Potentials on Riemann surfaces" and "Singular points" by P
and S respectively.

11) See P.
12) See P.
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lim w(9_ C(r, p) B, z)-.O. ( 1
$-0

By w(CG, z):> w(CG, z,R--Ro) E[zeR’w(CG, z,R--Ro)I--s-Y2’_
t9_ and we have lim w(9_C(r, p)B, z,R--Ro)--O. Now R is a

surface with positive boundary, whence lim w([2_] C(r, p) ] B, z)-O.
$-0

Thus N-Martin’s topology is H.S.

Suppose (o(C(r,p)]B,z)>O. Put n--E zeR’(o(3G, z)>l---
Then by (o(C(r, p)]B, z)l-w(3G, z) on 3G we have cw(C(r, p)]B, z)
(o(3G, z) in G, where G--C(r., p). Hence

2CV--E zeR’coo(B]C(r,p),z)>l----. (2)

Put ,-E R" oo(C(r, p) B, z) > 1--9- Then by P. C. 1 o)(C(r, p)

BCU,z)--O for every n. Put V--VnU Then by (1) and (2) we

have

w(CV] B] C(r,, p), z)

_
(o(CU ] B] C(r, p), z)

+w(CV]C(r,p)B,z)-(o(CVB]C(r,p),z)$O as n-->oo. (3)
On the other hand, by o(C(r, p)B, z)O and by (3) we have

(o(VBC(r, p), z)O. ( 4

Now w’(z)-w(C(r, p)B,z)--co(C(r p)B, z) 1-- in V, o’(z)-0 on
:2n

3G and D(o’(z)) oo. Hence U(z)-- rain (1, 2n(o’(z)) is a function required.
Thus by (3) and (4) N-Martin’s topology is D.S.

Lemma 7. Let R be a Riemann surface with positive boundary
and with K-Martin’s topology. Let A be a closed set in B such that
w(A, z) > O. Put F=E[zeR dist (z, A)>3o>O]. Then w,ay(A, z)

=lim w,n(A, )" B--N " dist(,B)--
In fact, by w(A, z)--w(A, ) it can be provecl similarly as heorem

la of P that w(A,)-- ; K(z,p) g(p) and by dist(F, A) > 0

(wa(A, ))--wa(A, )<w(A, ), where Bf is the set of K-non
minimal point. Now
--wn(A,z)>0 is also superharmonie in R. Let ’ be the canonical
mass distribution of w(z). Now by w.a(A, )--.n(wn(A, z))
wa(A, ) is represented by

--Bf. Hence --’-t-". Bu -0 on F. Hence if ’>0, this con-
tradicts the uniqueness of eanonieal mass distribution. Hence -0,
i.e. w(A, )--0.
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4). For K-Martin’s topology. Put [2_--E[zR" w(3G, z)l-s.

Then w(9_BC(r, p), z) W(r,,)(G,z) =0 by dist(G,C(r,p))O.

Thus K-Martin’s topology is H.M.


