No. 6]

54. A Remark on Convexity Theorems for Fourier Series

By Kenji YANO

Department of Mathematics, Nara Women's University, Nara (Comm. by Z. Suetuna, M.J.A., June 12, 1962)

In the previous paper [1], we have proved a number of convexity theorems concerning Fourier series. In the present paper, we shall improve some of them replacing either of the conditions by one-sided one.

Let $\varphi(t)$ be an even function integrable in $(0, \pi)$ in Lebesgue sense, periodic of period 2π , and let

$$\varphi(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos nt$$

and

$$\Phi_0(t) = \varphi(t), \Phi_{\alpha}(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} \varphi(u) du \quad (\alpha > 0).$$

The (C, β) sum of the Fourier series of $\varphi(t)$ at t=0 is

$$s_n^{\beta} = A_n^{\beta} \frac{1}{2} a_0 + \sum_{\nu=1}^n A_{n-\nu}^{\beta} a_{\nu} = \sum_{\nu=0}^n A_{n-\nu}^{\beta-1} s_{\nu} \ (-\infty < \beta < \infty),$$

where $s_n = s_n^0$, $A_0^{\beta} = 1$ and

$$A_n^{\beta} = \frac{(\beta+1)(\beta+2)\cdots(\beta+n)}{n!} \quad (n \ge 1).$$

In what follows we understand that $t\rightarrow 0$ means t>0 and $t\rightarrow 0$. Now, Theorems 2, 4, 5, and 6 in the paper [1] can be improved as follows.

THEOREM 2'. Let $0 \le b$, $0 < \beta - b \le \gamma - c$ and |c-b| < 1. If as $t \to 0$,

$$\int_{a}^{t} |\Phi_{\beta}(u)| du = o(t^{\gamma+1})$$

and

$$\int_{0}^{t} (|\Phi_{b}(u)| - \Phi_{b}(u)) du = O(t^{e+1}),$$

then we have

$$s_n^r = o(n^q), \ q = b + (r - c) \frac{\beta - b}{r - c},$$

as $n \rightarrow \infty$, for $c < r < \gamma'$, where

$$\gamma'\!=\!\inf\!\Big(\gamma,\ \frac{(b\!+\!1)\gamma\!-\!(\beta\!+\!1)c}{\gamma\!-\!c\!+\!b\!-\!\beta}\Big)\!.$$

COROLLARY 2.1'. Let $0 < \beta < \gamma$ and $0 < \delta < 1$. If (1) holds, and $\varphi(t) = O_L(t^{-\delta})$, then

$$s_n^{\alpha} = o(n^{\alpha}), \quad \alpha = \beta \delta/(\gamma - \beta + \delta).$$

THEOREM 4'. Let $-1 \le \beta$, $0 \le c$ and $0 < \gamma + 1 - c \le \beta + 1 - b$,

$$[b\gamma < (\beta+1)(c-1)]$$
. If as $n \to \infty$,

(2)
$$\sum_{\nu=0}^{n} |s_{\nu}^{\beta}| = o(n^{r+1})$$

and

$$\sum_{n=0}^{2n} (|s_{\nu}^{b-1}| - s_{\nu}^{b-1}) = O(n^{c}),$$

then we have

$$\Phi_r(t) = o(t^q), \ q = b + (r - c) \frac{\beta + 1 - b}{\gamma + 1 - c},$$

as $t \rightarrow 0$, for $c < r < \gamma + 1$.

COROLLARY 4.1'. Let $0<\delta<1$ and $-(1-\delta)<\gamma<\beta$. If (2) holds, and $a_n=O_L(n^{-(1-\delta)})$, then

$$\Phi_{\alpha}(t) = o(t^{\alpha}), \quad \alpha = \delta(\beta+1)/(\beta-\gamma+\delta).$$

Theorem 5'. Let $0 \le b$ and $0 < \beta - b \le \gamma - c$, $[(b-1)\gamma < c(\beta-1)]$.

If

(3)
$$\Phi_{\beta}(t) = o(t^r) \ as \ t \to 0,$$

and

$$\sum_{\nu=n}^{2n} (|s_{\nu}^{c-1}| - s_{\nu}^{c-1}) = O(n^b) \text{ as } n \to \infty,$$

then we have

$$\Phi_r(t) = o(t^q), \ q = c + (r - b) \frac{\gamma - c}{\beta - b},$$

as $t \rightarrow 0$, for $b < r < \beta$.

COROLLARY 5'. Let $0 < \delta < 1$ and $\delta < \beta < \gamma$. If (3) holds, and $a_n = O_L(n^{-(1-\delta)})$, then

$$\Phi_{\alpha}(t) = o(t^{\alpha}), \ \alpha = \gamma \delta/(\gamma - \beta + \delta).$$

Theorem 6'. Let $0 \le c$, $0 < \gamma - c \le \beta - b$ and |b-c| < 1, $\lceil c(\beta+1) < (b+1)\gamma \rceil$. If

$$s_n^{\beta} = o(n^r) \ as \ n \to \infty,$$

and

(5)
$$\int_{0}^{t} (|\Phi_{c}(u)| - \Phi_{c}(u)) du = O(t^{b+1}) \text{ as } t \to 0,$$

then we have

$$s_n^r = o(n^q), \ q = c + (r - b) \frac{\gamma - c}{\beta - b},$$

as $n \rightarrow \infty$, for $b < r < \beta$.

COROLLARY 6'. Let $0<\gamma<\beta$ and $0<\delta<1$. If (4) holds, and $\varphi(t)=O_L(t^{-\delta})$, then

$$s_n^{\alpha} = o(n^{\alpha}), \ \alpha = \gamma \delta/(\beta - \gamma + \delta).$$

Proof of Theorem 6'. Using the number γ' such as $\gamma'-c=\beta-b$ the assumptions imply

$$\gamma' > 0$$
 and $s_n^{\beta} = o(n^{\gamma'})$.

So, by a theorem of Izumi [2], i.e. Corollary 4.2 in [1], we have $\Phi_{\gamma'+1+\varepsilon}(t) = o(t^{\beta+1+\varepsilon}), \varepsilon > 0$. Consequently

$$\Phi_{c+k}(t) = o(t^{b+k})$$

holds for every $k > \beta - b + 1$. On the other hand, the condition (5) implies for $0 < t \le t_0$

$$\int_{t}^{2t} (|\boldsymbol{\Phi}_{c}(u)| - \boldsymbol{\Phi}_{c}(u)) du \leq At^{b+1},$$

A being an absolute constant, and then

(7)
$$\Phi_{c+1}(t+u) - \Phi_{c+1}(t) \ge -At^{b+1}, \ 0 < u \le t.$$

From (6) and (7) we have $\Phi_{c+1}(t) = O(t^{b+1})$ by Theorem 8 in [1], and so (5) yields

(8)
$$\int_{0}^{t} |\Phi_{c}(u)| du = O(t^{b+1}).$$

The result follows from (4) and (8). Cf. Theorem 6 and Lemmas 3 and 3' in $\lceil 1 \rceil$.

The proofs of Theorems 2', 4', and 5' are similar.

References

- [1] K. Yano: Convexity theorems for Fourier series, J. Math. Soc. Japan, 14, 119-149 (1962), in the press.
- [2] S. Izumi: Notes on Fourier analysis (XXVII): A theorem on Cesàro summation, Tôhoku Math. J. (2), 3, 212-215 (1951).