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As is well-known, Dirac [1 gave a very elegant foundation of
quantum mechanics, which contained however some self-contradictory
concepts from the mathematical point of view. J. von Neumann
gave another foundation of the theory based upon his spectral theory
of self-adjoint operators of Hilbert space. However the whole spec-
tral theory is in fact not necessary and what Dirac actually needs

1 dis only that the self-adjoint operators t. and could be put in
i dt

diagonal forms. There is also another justification of "improper"
iunctions introduced by Dirac to put these operators in the diagonal
forms by means of the theory of distributions of L. Schwartz. But
this theory is not adequate to interpret inner product used in Dirac’s
theory. The purpose of this paper is to show that we can interpret
the theory of Dirac in a more natural and mathematically rigorous
way.

Recently A. Robinson developed non standard analysis SJ, which
is an adequate non Archimedian extension of real number field, and
in which he succeeded to define infinite and infinitesimal and to
develop rigorously infinitesimal calculus of Leibniz and Euler.

In this paper, we shall define Dirac space by an ultraproduct of
L.(--oo, oo) and justify Dirac’s method by using Robinson’s considera-
tion of infinite and infinitesimal.

Let I be the set of all positive integers.
A family of non-empty subsets of I is called a filter over I if

(i) F and F imply FF. , and
(ii) Fxe and FFI imply F.e.

A filter over I is an ultrafilter if it is maximal among the class of
filters over L It is easily proved that a necessary and sufficient
condition that be an ultrafilter over I is that for AI, Ae if
and only if I-A. Hereafter we shall fix an ultrafilter 0 over
which does not contain any finite subsets of L

Now let R0 be the set of all real numbers. Let a and b be ele-
ments of R0. We use the notation a=(a, a,...) and b=(b, b.,...)
as usual, where a and b are real numbers and called the i-th coor-
dinates of a and b respectively, a=b,ab,a+b and a.b are defined
to be {i[ a-- b} 0, [i ]a b} 0, (al+ bl, a.+ b., ) and (a. b, a.. b.,...
respectively. - is a congruence relation compatible with , +, and..
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R* is defined to be Ro/= which is also written as Ro*/o. R* is an
ordered field. This follows from the well developed general theory
of ultraproduct (2, [:3, [4) and is also proved directly. By the
imbedding isomorphism j from R0 to R* defined by j(ao)- (no, no, no,..’),
we can consider RoaR*. R* contains an infinite e.g. (1, 2,3,...)
which is larger than all elements of Ro.

Let M be the set of all aeR* such that lal r for all positive
re R0. The elements of M will be said to be infinitesimal. We define
a::.b if and only if a-b is infinitesimal.

We see easily the following lemma.
LEMMA 1. If a sequence a, a.,. is convergent to ao in Ro, then

a=. ao where a--(a, a,. ).
Now let Co be the set of all complex numbers. C*-Co/o is

defined in the same way as above. C* can be considered as R*(R)iR*.
and lal is defined to be (,,...) and (11, I1,’") for aeC*

where --(, ,...). a’-fl is defined to be
Finally Dirac space is defined as follows: Let x and y be

elements of (L.(-., o)). We use the notation x-(x, x,...) and
y--(y, y,...) as usual, where x, and y, are elements of L.(--o,
and sometimes written as x,(t) and y,(t) respectively. Let
=(a, a.,...) be an element of C*. x=-y, ax, (x, y) and x+y are defined
to be {ilx,--y,}o, (ax, ax,. .), ((x, y), (x, y),. .) and (x+y,
x/y,. .) respectively.

It is easily proved that is a congruence relation compatible
with these operations., and +. is defined to be (L.(-o,
))/--=. The injection map from L.(--, ) into is defined by
Xo->(Xo, Xo, Xo,. ).

is a linear space over C*. Also the following propositions
hold for each x, y, x, x and a C*.

1) (x, x)_>0 and (x, x)-0 is equivalent to x-0.

2) (x, x)
3) (x+x, y)--(x, y)+(x, y) and (ax, y)-a(x, y).

These follow from the theory of ultraproduct ([2, [:, [4), and are
also proved directly.

IIxll is defined to be J(x, x). Ilxll-(llxII, IIxll,’" "). xy is defined
to be IIx-Y

LEMMA 2. If x,x.,...->Xo in L.(--, c), then XXo where
x,. ).

PROOF. This follows from Lemma i using
]l -Xo]l-(llXo-X ll, IlXo-X ll,’" ").

.(t) is defined by 3(t)-n+nt, (if -1-- <t__<O); ----t, (if
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0t__ - --0, (otherwise). is defined to be (3, &,...).

We have the following propositions.
PROPOSITION I. t.(t)-.0.
PROOF. This is proved by Lemma 1 and calculation of
PROPOSITION 2. t. (t--a):--a(t--a).
PROOF. This follows directly from Proposition 1.

PROPOSITION 3. For xeL(--, ), x(t)-, x(s)(t--s)ds

PROOF. As usual we define (x,y)(t) to be x(t--s)y(s)ds, x,y

=y,x and IIx,yll<_llxll..llyll are familiar.
Since the family C of continuous functions with compact carrier

is dense in L(--o, ), we have only to prove x,=x for xC. To
prove this, it is sufficient to prove that x, are uniformly conver-
gent to x, because the carriers of all x,3’s and x are contained in
a closed interval. This is easily proved as follows.

P oPo mo if

PROOF. Because ((t--a), (t--b))=O if a--b I> 2__.
n

REMARK. (6, 6) is infinite.
Propositions 2-4 show that the self-adjoint operator t. can be

put in the diagonal form.
Let U be a unitary operator of L(--, o), U can be also con-

sidered as a unitary operator of by defining Ux by (Ux,, Ux.,...).
Clearly (Ux, Uy)-(x, y).

Fourier transforms and are defined by
1

(x)(t)--1.i.m. ,1. f’e,tx(s)ds.
It is familiar that {} and { are unitary and --{t.{.1 d

i dt
(t) and ](t) are defined to be 3(t--a) and a(t--a) respectively.

1 dPROPOSITION 5.
i dt

v(t)=a(t)"
I d t=t’t--a--’.’t--a-.at--aPROOf.
i dt
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--=a(t--a)--a(t).
PROPOSITION 6. (y(t), (t))--0 if a-b.
PROOF. ((t), (t))--((t--a), (t--b))--((t--a), (t--b)).
PROPOSITION 7. X(t) ()(s)(t)ds.

.f(x)(s)v(t)ds--j()()(t )d--(() (), (t ))PROOF.

-(x(s), (t-s))-,.x.
Propositions 5-7 show that the self-adjoint operator 1 d can

i dt
be put in diagonal form.

PROPOSITION 8. If ze L.(-- oo, oo) and z(t) is continuous, then

PROPOSITION 11.

PROPOSITION 12.
PROOF. We have only to prove (., x)’-5(0) for C.

proved as follows:
This is
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( )(t)(t)dt--(O)l f(3. )(t)(5(t)"(O))dt

sup ?(t)--(O) [.
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