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1o The purpose of this note is to introduce a functional analy-
sistic method into the amount of the information on stationary
memory channels which contain finite or infinite memory channels
(cf. Feinstein 4). By the method described in this note, the nota-
tional complications to introducing the concepts of the entropy, the
transmission rate and the stationary or ergodic capacity in a memory
channel can be avoided and they will be given by a simple measure
theoretic functional forms.

It will be stated that, in 2, the amount of the entropy of
every probability distribution on an information source determins
uniquely a bounded stationary linear functional of the subconjugate
space of the Banach space of bounded random variables over the
source, this is an extension of Breiman’s Theorem [1, and that, in

3, the channel distribution determins a bounded linear transforma-
tion between the subconjugate spaces of the Banach spaces of bounded
random variables over the input space and the compound space. This
treatment of the channel distribution as a linear transformation was
previously introduced by Echigo-Nakamura 3 in the case of a kind
of continuous channel without memory. In the final part, it will be
stated an integral representation theorem of the transmission rate
of a probability distribution of the input space. This is a generaliza-
tion of Parthasarathy’s Theorem 7.

2. Let (X, ) be a measurable space with a measurable trans-
formation T from X onto itself. Assume that there exists a finite
subfield o of such that

(1) V T-o=
where T-o={T-U; ue0} and VT-0 (Nbeing a set of integers)
is the smallest a-subfield containing the fields T-N0, k eN. The
measurable space (X, ) defined here contains as a special case the
input message space of a memory channel, that is the case, X is
infinite product space of alphabet, is a-field generated by all cyl-
inder sets and T is the shift transformation.

Denote P,(X)the set of all T-stationary probability measures
over (X, N). Then P,(X) is nonempty and is dominated by a measure
/2eP,(X), that is, every pePs(X) is absolutely continuous with respect
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to /, say, p<<Z for every pePs(X). Let M(X) be the linear space
of all bounded complex measurable functions over (X, ) and M(X)
be the linear subspace, of M(X), of all T-invariant functions in
M(X). Let L(X) be the linear space of all bounded signed measures
$ with $<<Z and L(X) be the space of all T-stationary $eL(X).
Then the spaces M(X), M(X) and L(X), L(X) are Banach spaces
with the norms

f l-- l-ess, sup If(x)[ for f M(Z) or f M(X)
and

II$ll=total variation of for $eL(X) or eL(X),
respectively. Then it is not hard to show that M(X) is the con-
jugate Banach space of L(X), or equivalently L(X) is the subcon-
jugate space of M(X).

Denote

(2) --/ T-o and lI- [_J / T-o
Where [_J means the set theoretic union. The family lI is a subfield
but not necessarily a-subfield of . For any probability measure

P<<Z and for any fixed a-subfield 3 of , denote P(U]3) the con-
ditional probability of a set Ue conditioned by . For any positive
bounded measure SeL(X) over (X, ), say SeL+(X), $=$/]1511 is a
probability measure and put

P,(U 3) P,(U 3).
For the a-subfield =, define a functional

for every SeL+(X), where ,0 means that the summation on U
running over all atoms in 0. When (X, ) is input message space
of a memory channel, and p is a stationary probability measure, i.e.,
pePs(X), the amount H(p) coincides with the amount of the entropy
of p (cf. Halmos [5).

Besides, any measure $eL(X) is uniquely expressed such as

for $()eL+(X)(k=l, 2, 3, 4)and the domain of the functional H(.)
is extended over the full space L.(X) by

’) +
The functional H(.) is well-defined over L(X) and it will be called
by entropy functional of the measurable space (X, ). A functional
F(.) over L(X) is T-stationary, if F($)--F(T$) for all $ e L(X), where
(T)(U)=(T-U), Ue. The following is an extension of the
Breiman’s convex linear form [1.

THEOREM 1. The entropy functional H(.) is a bounded linear

functional over the Banach space L(X) and it is uniquely extended
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to a T-stationary bounded linear functional over the BREach space
L(X).

Since M(X) is the conjugate space of L(X), by Riesz-Markov-
Kakutani’s Theorem, the following is obtained"

THEOREM 2. There exists uniquely, within [ a.e., a bounded T-
invariant non-negative measurable function h(x)M(X) such that

( a ) H() fh(x)d(x) for every e L(X).
X

This contains the integral representation theorem of Parthasa-
rathy [7].

3. Now we wish to apply Theorem 1 for the channel, which
contains every discrete memory channel (cf. Feinstein 4]) as a
special case. It will be introduced a concept of stationary channel
(X, r, Y): The input space (X, ) is the measurable space with T
and o given in 2, and the output space (Y,)) is a measurable
space having a measurable transformation S and finite subfield o
with the corresponding property (1) to the case of (X, , T,o).
Furthermore let ,(V, x) be a function defined over the product family
X such that
(i) For each .fixed V, ,(V, x) is a measurable functions on

(z,
(ii) For each fixed x eX, ,(V, x) is a probability measure over

(Y,
and

(iii) ,(V, x) is stationary, i.e., ,(SV, Tx) ,(V, x) for every xX
and V.

Whence we call the triple (X, ,, Y) being a stationary channel.
Denote (Z, 3) the product measurable space (X Y, i(R)), and

R the measurable transformation over (Z, :) defined by T(R)S, the
product transformation of T and S, and furthermore put the pro-
duct a-subfields 3o=o(R))o, and 3=(R). Then the condition
(1) satisfies for (Z, , R, o). For any L(X), putting

4) "(U, v)-f,(v, x)d$(x) for Ue and Ve,
U

" is uniquely extended to a bounded signed measure over (Z, 3)
(denote it by the same symbol "), and putting

5) ’(v)-f,(v, x)d$(x) for Ve,

’ is a bounded signed measure over (Y, ).
Besides we set up a condition
(i’) For each fixed Ve, ,(V, x) is measurable with respect to

the subfield 1 defined in (2).
When the stationary channel (X, ,, Y) satisfies the condition (i’),
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it will be called properly finite. Such a channel contains, as a
special case, every finite memory channel in the sense of Khinchin
[6] and Takano [8.

Let L(Y), L(Z) and L(Y), L(Z) be the Banach spaces defined
as the L(X) and L(X) respectively. The following is a general
treatment of Echigo-Nakamura’s Theorem

THEOREM 3. Is a stationary channel (X, , Y) the mappings

-->’ and -->" defined by (4) and (5) are bounded non-negative
linear transformations from L(X) (from L(X)) into L(Y) and L(Z)
(into L(Y) and Ls(Z)), respectively. If the channel (X,,, Y) is
properly finite, then their transformations are weakly* continuous
in the sequentially weak* topologies over L(X), L(Y) and L(Z).

In a stationary channel (X, ,, Y), since the entropy functionals
H(.) over (Y, ) and (Z, :) are defined and since ’L(Y) and "L(Z)
for every $eL(X), it can be defined a functional

R()--H()+H(’) H(")
and it will be called by transmission functional of the channel.
Whence we obtain the following"

THEOREM 4. The transmission functional R(.) is a bounded T-
stationary linear functional over L(X) and there exists an essentially
unique bounded T-invariant measurable function r(.) on X such that

R() fr(x) d(x) for every L(X).
X

If the stationary channel (X, ,, Y) is properly finite and having
an ergodicity property"
6 lim [,(TnVI V., x)--,(TnVI, x),(V2, x)---0

for every xeX and every V, Ve), then the channel (X,,, Y) is
admissible in the sence of Feinstein [4 and hence after proving
some continuity properties of the entropy and the transmission
functionals, it can be obtained that the stationary capacity coincides
with the ergodic capacity. This contains the result of Breiman [1,
Carleson [2 and Parthasarathy

The detailed proofs of the statements in this note will be pub-
lished in the KSdai Mathematical Seminar Report with the allied
topics.
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