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10. A Converse Theorem on the Summability Methods

By Kazuo ISHIGURO
Department of Mathematics, Hokkaido University, Sapporo

(Comm. by Kinjir5 KUNUGI, M.J.A., Jan. 12, 1963)

1. In a recent paper the author proved the following
Theorem 1. If {sn} is summable (1) to s, then it is summable

(L) to the same sum. There is a sequence summable (L) but not
summable (1). (See 5.)

Here we prove a converse of this theorem:
Theorem 2. If {sn} is summable (L) to s, and iffurther s_--M,

then it is summable (1) to the same sum.
The latter theorem corresponds to the following celebrated

theorem of Hardy and Littlewood:
Theorem 3. If {Sn} is Abel summable to s, and if further

s_--M, then it is Cesro summable (C, 1) to the same sum. (See
3, 2 Theorem 94.)

Here we use the same notations as before. When a sequence
{s} is given we define the method L as follows: If

--1 , s xn+
log(1 --x) -0= n+ 1

tends to a finite limit s as x-->l in the open interval (0, 1), we say
that {s} is summable (L) to s and write lim s--s(L). (See 1.)

On the other hand we define the method as follows: If
t0- s0, tl 81,

l (so_ Sltn
log n

tend to a finite limits as n-->, we say that {s} is summable (1)
to s and write lim s-s(l). (See 2 p. 59, p. 87.)

2. Proof of Theorem 2. For the proof we use the method
of Karamata 6]. (See also _2 pp. 156-158, 7J pp. 55-57.) Without
loss of generality we may assume that the s are non-negative, for
otherwise we would work with the sequence s+M which is non-
negative. At first we shall prove two lemmas.

Lemma 1. Let g(x) be continuous except at most for one dis-
continuity of the first kind in the closed interval 0, 1. Let further
g(x) be bounded in 0, 1_, and g(x)-g(x+O) and g(1)-g(1--O). Then
to every positive , there exist two polynomials, p(x) and q(x), such
that
( 1 q(x)

_
g(x)

_
p(x) for 0

_
x

_
1,

and
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(2) O<g(x)--q(x)<e, O<p(x)--g(x)<s
for Oa<x<l, where a is an appropriate positive constant, 0al.

Proof of Lemma 1. At first let g(x) be continuous. Then g(x)
_+ _e is continuous and by Weierstrass’ Approximation Theorem (see

2
[4] p. 228, [7 p. 55) there exist two polynomials p(x), q(x)such that

q(x) (x)- -E <-

p(x)-- g(x)+- --<--2 for 0_

These two polynomials satisfy (1) and (2).
Next if g(x) has a finite jump at x=$, 0<$<1, we construct

two functions g*(x) and g.(x) continuous in the closed interval [0,
such that

g.(x)<g(x)<g*(x) for 0<x<l,
and

g.(x)-g(x)-g*(x) for O<a<x<l,
1 (1A-) for example. Then to every posi-where we may take a----

tive e, there exist two polynomials, p(.) and q(x), such that
(x) <_a,(x), *()_<()

o<_g,(x)-Kx)<_ e, o<_p(x)-g*(x)<_e
for 0<x<l. These two polynomials satisfy (1) and (2), whence the
proof is complete.

Lemma 2. Let g(x) be any function of the type prescribed in
Lemma 1. Then

3 ) lim --1 ,. S x/g(xn+)-sg(1),
1-0 log (l--x) =0 n+l

where

s= liimo
--I s

o (-) .--Eo n+
Proof of Lemma 2. At first we shall prove (3) when g(x) is a

non-negative power of x, i.e. g(x)--x (c>_O). In this case the left
member of (3) is

--o log (1 x) -o= n+ 1

=lim --1 s,
log (l-x)

2]
n+l

x(/ t)( )

=lim log (1--x+l) --1 s, x(/)(+l,
log (i--x) log (1--x/)’-n+i

lim log (1--x/)
x---l--O log (1 x)

s-s=s. 1 c.
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Hence (3) is true whenever g(x) is a polynomial. To prove the general
case we use Lemma 1. Since we have assumed s non-negative, we
have

--1 8n xn+g(xn+) < --i 8n X"+P(xn+)
log (1-- x) -=0 n-i log (1-- x) ----0 n-k1

and

lim 1 , Sn
-o log (1 --X) ---o= n+ 1

x g(x+) <lim 1 o s,
---o log (l--x) n+ 1

sp(1)

_
s{g(1) + s}.

Inasmuch as s may be taken arbitrary small, we have

lim --1 . s xn+ lg(n+ ) sg(1).
-o log (1 X) --o= n+ 1

Similarly we get

lim 1 c 8n Xn+ ’g(x"+ ) _> sg(1),

whence the proof is complete.
We shall now put

0 for O_<x<--1
e

g(x)-- 1__ for __1 _x_ 1.
x e

Then we get g(1)--1, and further

g(x"+’)--O if xn+l < 1
e

i.e. if n+l>

Thus from (3)

log 1--_

z_ n+ 1-o log (1-x)_
log--

lim 1 2. s,
--o log (1 --x) --_ n+ 1

log-

If we put x--e--, we have

lim --1 - 8n- log (1 --e--) =o n+ 1

Since

Xn+

we get

lim log (1--e-) 1,
log N

n+ lp(9n+
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lim 1 -1 Sn- log N 0 n+ 1

Since lim log N --1, we have lim s-s(1).
log (N--l)

This completes the proof of Theorem 2.
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