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10. A Converse Theorem on the Summability Methods

By Kazuo ISHIGURO
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjird KuNuGl, M.J.A., Jan. 12, 1963)

§1. In a recent paper the author proved the following

Theorem 1. If {s,} is summable (I) to s, then it is summable
(L) to the same sum. There is a sequence summable (L) but mot
summable (1). (See [5].)

Here we prove a converse of this theorem:

Theorem 2. If {s,} is summable (L) to s, and if further s,>— M,
them it is summable (1) to the same sum.

The latter theorem corresponds to the following celebrated
theorem of Hardy and Littlewood:

Theorem 3. If {s,} is Abel summable to s, and if further
s,=>—M, then it is Cesaro summable (C,1) to the same sum. (See
[8], [2] Theorem 94.)

Here we use the same notations as before. When a sequence
{s.} is given we define the method L as follows: If

—1 & Sn n+1
log(1—) n2=o n+1
tends to a finite limit s as x—1 in the open interval (0,1), we say
that {s,} is summable (L) to s and write lims,=s(L). (See [1].)
On the other hand we define the method ! as follows: If
t0=80! tlzsh
1 EN S,
log n<S°+E+ v n+1> (n=2)
tend to a finite limits as n—>o, we say that {s,} is summable (1)
to s and write lim s,=s(l). (See [2] p.59, p. 87.)

§2. Proof of Theorem 2. For the proof we use the method
of Karamata [6]. (See also [2] pp. 156-158, [7] pp. 55-57.) Without
loss of generality we may assume that the s, are non-negative, for
otherwise we would work with the sequence s,+M which is non-
negative. At first we shall prove two lemmas.

Lemma 1. Let g(x) be continuous except at most for one dis-
continuity of the first kind in the closed interval [0,1]. Let further
9(x) be bounded in [0,1], and g(x)=g(x+0) and g(1)=g(1—0). Then
to every positive ¢, there exist two polynomials, p(x) and q(x), such
that
(1) 9(x) <g(x)<p(x) for 0<x<l,
and

t,=
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(2) 0<g(x)—q(x)<e, 0<p(x)—g(x)<e
Jor 0<o<a<1, where g 18 an appropriate positive constant, 0 <o <1.
Proof of Lemma 1. At first let g(x) be continuous. Then g(x)

=+ is continuous and by Weierstrass’ Approximation Theorem (see

£
2
[4] p.228, [7] p.55) there exist two polynomials p(x), g(x) such that
g 3

_ - )<z,
T
£

lp(x)—-<g(x)+-§->‘g2 for 0<z<1.

These two polynomials satisfy (1) and (2).

Next if g(x) has a finite jump at x=¢, 0<£<1, we construct
two functions g*(x) and g,(x) continuous in the closed interval [0, 1]
such that

9:(®)<g(x)<g*(x) for 0<x<1,
and
9-(x)=g(®)=g*(@x) for 0<o<x<1,

where we may take a=%(1+é) for example. Then to every posi-

tive ¢, there exist two polynomials, p(x) and ¢(x), such that
() < g4 (x), 9%(x) <p(x)
0<g,(x)—q(x)<e, 0<p(x)—g*(x)<e
for 0<ax<1. These two polynomials satisfy (1) and (2), whence the
proof is complete.
Lemma 2. Let g(x) be any function of the type prescribed in
Lemma 1. Then

(3)

where

. —1 S
l n n+1 n+1) — 1 s
F S ey D e ) =s9(1)

— 1i -1 S n+1
S_wl-l»ﬁlo log (1—%) ,;, n—|—1x

Proof of Lemma 2. At first we shall prove (3) when g(x) is a
non-negative power of z, i.e. g(®)=2° (¢>0). In this case the left
member of (3) is

lim -1 i S P Lpenr
v—1-0 log (1—a) #=0 n+1

—1 S, e+ D+
m
log (1—91:)Z n+1
log (1—x°*t) —1 Sp e DnsD
. X
log(1—x) log (l—acc“)E n+1
im log (1—a°*?)

=li

v-1-0 log (1—zx)

=li

=lim

s=s=s-1°,
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Hence (3) is true whenever g(x) is a polynomial. To prove the general

case we use Lemma 1. Since we have assumed s, non-negative, we
have

‘1 & S, n+1 n+1 _1 = S n+1 n4+1
t_x x < o x
log (l—x)n2=o n+1 o@@ )= log l—x)nZ=o n+1 p(=")
and
- -1 2 s . —1 )
1 n wn+1 x"” <1 n xn+1 90"+1
o log (l—x)m2=o n+1 o( )_w-l»f?o log l—x)nE=0 n+1 p(=")
=sp(1) <s{g(1)-+¢}.

Inasmuch as ¢ may be taken arbitrary small, we have

: —1 e, 8
h n wn+1 xn+1 Ss 1 .
i g l_x)”}:‘,ﬂ | g(x"* ) <sg(1)

Similarly we get

. -1 2 s ;
1 n wn+1 xn+1 > 1 ,
x—_l.ﬁlo log (1—x) n2=0 n+1 o =s9(1)

whence the proof is complete.
We shall now put

0 for 0<Lz< 1
e
9(z)=
1 for 1 <z<l1.
x e
Then we get g(1)=1, and further
g(xn+1):0 if xn+1<l’
e
. . 1
ie. if n+1> .
1 1
og —
x
Thus from (3)
lim — — L Sn_gne1, 1
a—1-0 log (1—2),. 1, n+41 xmtt
Iog—lg
= lim __.:1__ 8 =
=1-0 log (1—=@) s 1__; m+
log—;—
i
If we put x=¢ ¥, we have
. __1 N-1 s
lim n_ =g,

== log (1 _ewy0 mtl
Since

-1
lim —log (1—e N)_l
N"m - 5 ’

log N
we get
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Since lim

(1]
f2]
(3]
[4]
(5]
fe]

[

log N
~y—o log (N—1)
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. 1 ¥t g
lim _°n =
N log N a=0 n+1

S.

=1, we have lim s,=s(l).

This completes the proof of Theorem 2.
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