1. Existence of Pseudo-Analytic Differentials on Riemann Surfaces. I

By Akira SAKAI

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1963)

In this paper, we shall prove the existence theorems for (F, G)-pseudo-analytic differentials in the sence of Bers (Bers, L., [1], [2]) on arbitrary Riemann surfaces, under the condition:

(1) $-i\overline{F}G>0$, $M \ge |F| + |G| \ge M^{-1}>0$. We consider the differential $\omega = \sqrt{\sigma} du$, u being locally a solution of the partial differential equation

(2) $(\sigma u_x)_x + (\sigma u_y)_y = 0$, where σ being a positive function on Riemann surface. A generalization of Weyl's lemma for this differential is proved, and the method of orthogonal projection is used.

I. $[\alpha, b]$ -analytic functions and differentials. 1. Let Ω be a domain of z-plane. A subdomain Ω_0 of Ω is called the compact subdomain of Ω , if $\overline{\Omega}_0 \subset \Omega$ and denoted by $\Omega_0 \subset \Omega$. The class of functions continuous on Ω (or, which have continuous partial derivatives up to the *n*-th order) is denoted by $C(\Omega)$ (or $C^n(\Omega)$). The class of functions whose *n*-th order partial derivatives are all uniformly α -Hölder continuous $(0 < \alpha < 1)$ in Ω , is denoted by $C^{n+\alpha}(\Omega)$. The class of functions of $C(\Omega)(C^n(\Omega), C^{n+\alpha}(\Omega))$ which have compact carrier in Ω is denoted by $C_0(\Omega)(C^n_0(\Omega), C^{n+\alpha}_0(\Omega))$. The class of functions square summable on every compact subdomain of Ω is denoted by $\Re^2(\Omega)$.

Definition 1.1. A function f(z) of $\mathfrak{L}^2(\Omega)$ is said to be in the class $\mathfrak{D}_{\mathfrak{s}}(\Omega)$, if there exists a function $g(z) \in \mathfrak{L}^2(\Omega)$ such that, for every function $\phi(z)$ of $C_0^2(\Omega)$,

(1.1)
$$\int_{\varrho} \int \{f(z)\phi_{\bar{z}}(z) + g(z)\phi(z)\}dxdy = 0$$

holds. In this case, we write $g(z) = f_{\bar{z}}(z)$.

We note that the condition (1.1) is replaced by

(1.1)'
$$Re \int_{\mathcal{Q}} \int \{f(z)\phi_{\bar{z}}(z) + g(z)\phi(z)\} dx dy = 0$$

Lemma 1.1. If $f(z) \in \mathbb{D}_{\bar{z}}(\Omega)$ and $f_{\bar{z}}(z) = 0$ a.e. in Ω , then f(z) is analytic in Ω .

Proof. Let Ω_0 be any compact subdomain of Ω . Let $L^2(\Omega_0)$ be the Hilbert space of the functions square summable on Ω_0 , $E(\Omega_0)$ be the closed subspace of $L^2(\Omega_0)$ spanned by the functions ϕ_z with $\phi \in C_0^2(\Omega)$. The orthogonal complement of $E(\Omega_0)$ in $L^2(\Omega_0)$ is denoted by $A(\Omega_0)$. We shall prove that all the functions of $A(\Omega_0)$ are analytic. If f(z)

A. SAKAI

belongs to $A(\Omega_0) \cap C^1(\Omega_0)$, it is analytic. Let J_* denote the molifier (K. O. Friedrichs [3]). If f(z) is any function of $A(\Omega_0)$, then $(J_{*}f, \phi_{z}) = (f, J_{*}\phi_{z}) = (f, (J_{*}\phi)_{z}) = 0$

holds for every $\phi(z) \in C_0^2(\Omega_0)$, and for sufficiently small ε . Therefore, $J_{*}f \in A(\Omega_{0})$, and, since $J_{*}f \in C^{2}(\Omega_{0})$, it is analytic. On the other hand, $J_{*}f$ converges to f(z) in $L^{2}(\Omega_{0})$ and hence uniformly in every compact subdomain of Ω_0 . This implies the analyticity of f(z). If $f(z) \in \mathbb{D}_{\mathfrak{s}}(\Omega)$ and $f_{\bar{z}}(z) = 0$, then $f \in L^2(\Omega_0)$ and

$$(f, \bar{\phi_z}) = \int_{g} \int f \phi_z dx dy = 0$$

holds for every $\phi(z) \in C^2_0(\Omega)$ and hence we have $f(z) \in A(\Omega_0)$ which proves the lemma.

Lemma 1.2. Let Ω be a bounded domain and $\rho(z)$ be a bounded measurable function on Ω . Set

$$\sigma(z) = -\frac{1}{\pi} \int_{\rho} \int \frac{\rho(\zeta)}{\zeta - z} d\xi d\eta,$$

then we have

(1) $\sigma(z)$ is in $C^{\alpha}(\Omega)$, and is bounded in Ω . (2) $\sigma(z)$ is in $\mathfrak{D}_{\bar{z}}(\Omega)$, and $\sigma_{z}(z) = \rho(z)$ a.e. in Ω . (3) If $\rho(z) \in C^{\alpha}(\Omega)$, then $\sigma(z) \in C^{1+\alpha}(\Omega)$. This is the well-known result.

2. Let Ω be a bounded domain and a(z), b(z) be functions of $C^{\alpha}(\Omega).$

Definition 1.2. A function f(z) of $C^{1}(\Omega)$ is called an [a, b]-analytic function if it satisfies the equation

(1.2)
$$f_{\bar{z}}=af+b\bar{f}$$
 a.e. in Ω .

Lemma 1.3. If f(z) is a bounded function of $\mathfrak{D}_{\bar{z}}(\Omega)$ and satisfies (1.2) a.e. in Ω , then f(z) is [a, b]-analytic.

Proof. Consider the function

(1.3)
$$\varphi(z) = f(z) + \frac{1}{\pi} \iint_{a} \frac{a(\zeta)f(\zeta) + b(\zeta)\overline{f(\zeta)}}{\zeta - z} d\xi d\eta.$$

Since $af + b\overline{f}$ is bounded, the integral of the right member is in $C^{\alpha}(\Omega) \cap \mathfrak{D}_{\bar{z}}(\Omega)$. We have $\varphi_{\bar{z}}(z) = 0$ a.e. in Ω . By Lemma 1.1, $\varphi(z)$ is Therefore, we have $f(z) \in C^{\alpha}(\Omega)$, and hence $af + b\overline{f}$ is in analytic. $C^{\alpha}(\Omega)$, and we have consequently $f(z) \in C^{1+\alpha}(\Omega)$. This proves the lemma. (This proof contains the result that the [a, b]-analytic function belongs to $C^{1+\alpha}(\Omega)$.)

Lemma 1.4. (Similarity principle.) If $f(z) \in \mathfrak{D}_{z}(\Omega)$ and satisfies (1.2) a.e. in Ω , then there exists an analytic function $\varphi(z)$ similar to f(z): that is, there exists a function S(z) such that 0

$$0 < k^{-1} \leq |S(z)| \leq k$$

for some constant k, and such that

No. 1] Existence of Pseudo-Analytic Differentials on Riemann Surfaces. I

(1.4)
$$\begin{aligned} \varphi(z) = S(z)f(z). \\ Proof. \text{ Let } E \text{ be the set of points of } \mathcal{Q} \text{ at which } f(z) = 0. \text{ Set} \\ \rho(z) = \begin{cases} a(z) + b(z)\overline{f(z)}/f(z) & \text{in } \mathcal{Q} - E. \\ a(z) + b(z) & \text{in } E. \end{cases} \end{aligned}$$

Then, $\rho(z)$ is a bounded measurable function in Ω . Setting

(1.5)
$$\sigma(z) = \frac{1}{\pi} \int_{\rho} \int \frac{\rho(\zeta)}{\zeta - z} d\xi d\eta,$$

we have $\sigma_{\bar{z}}(z) = -\rho(z)$ by Lemma 1.2. We set $\varphi(z) = S(z)f(z)$ with $S(z) = e^{\sigma(z)}$. Then, we have in $\Omega - E$, $\varphi_{\bar{z}}(z) = S(z)\{f_{\bar{z}}(z) - \rho(z)f(z)\} = S(z)\{f_{\bar{z}}(z) - \rho(z)f(z)\} = S(z)\{f_{\bar{z}} - af - b\bar{f}\} = 0$ and in E, $\varphi_{\bar{z}}(z) = S(z)\{f_{z}(z) - \rho(z)f(z)\} = S(z)\{f_{z} - af - bf\} = S\{f_{\bar{z}} - af - b\bar{f}\} = 0$. Thus, we have $\varphi_{\bar{z}}(z) = 0$ a.e. in Ω .

Lemma 1.5. If $f(z) \in \mathfrak{D}_{\bar{z}}(\Omega) \cap L^2(\Omega)$ and satisfies (1.2) a.e. in Ω , then we have, in every compact subdomain Ω_0 of Ω , (1.6) $|f(z)| \leq k_0 ||f||_{\Omega}$,

where k_0 is a constant depending to Ω_0 .

Proof. Let δ be the distance between Ω_0 and $\partial\Omega$. We consider an arbitrary point $z_0 \in \Omega_0$ and the disk $K: |z-z_0| \leq \frac{\delta}{2}$. Define the analytic function $\varphi(z)$ of previous lemma. Then we have

$$egin{aligned} &|f(z_0)|^2 \leq k^2 \,|\,arphi(z_0)\,|^2 \ &\leq rac{4k^2}{\pi\delta^2} \!\int_{K} |\,arphi(z)\,|^2 dx dy \ &\leq rac{4k^4}{\pi\delta^2} \!\int_{K} \!|\,f(z)\,|^2 dx dy \leq k_0^2 ||f||_{arphi}^2 \end{aligned}$$

with $k_0 = 2k^2/(\sqrt{\pi}\delta)$.

If $f(z) \in \mathfrak{D}_{\overline{z}}(\Omega)$ and satisfies (1.2) a.e. in Ω , then for any compact subdomain Ω_0 of Ω , $f(z) \in L^2(\Omega_0)$ and hence f(z) is bounded on every compact subdomain of Ω . Thus, from Lemma 1.3, we have

Theorem 1.1. If $f(z) \in \mathfrak{D}_{\mathbb{A}}(\Omega)$ and satisfies (1.2) a.e. in Ω , then f(z) is [a, b]-analytic in Ω .

3. Let R be an arbitrary Riemann surface, and C, C^n, \cdots etc. be the classes of functions which have the corresponding properties in every neighborhood. Let $a(z)d\overline{z}$, b(z)dz be differentials of C^{α} .

Definition 1.3. A differential $\varphi = fdz$ is called an [a, b]-analytic differential if $\varphi \in C^1$ and satisfies the equation

$$(1.7) f_{\bar{z}} = af + b\bar{f}.$$

We consider the real Hilbert space L^2 of pure differentials square summable on R. The inner product is defined by

(1.8)
$$(\varphi, \varphi') = Re \int_{R} \int \varphi \wedge *\overline{\varphi}', \quad \varphi, \varphi' \in L^{2}.$$

We also consider the subspace

3

A. SAKAI

[Vol. 39,

 $E = \text{closure of } \{ D\phi = (\phi_z + \overline{a}\phi + b\overline{\phi})dz; \phi \in C_0^2 \} \text{ in } L^2.$ The orthogonal complement of E in L^2 is denoted by A.

Theorem 1.2. A is the space of [a, b]-analytic differentials in L^2 .

Proof. Let $\varphi = fdz$ be in L^2 , then for every $\phi \in C_0^2$, we have

(1.9)
$$(\varphi, \mathbf{D}\phi) = Re \int_{R} \int f dz \wedge i \{\phi_z + \overline{a}\phi + b\phi\} d\overline{z}$$
$$= 2Re \int_{R} \int \{f\phi_{\overline{z}} + (af + b\overline{f})\phi\} dx dy.$$

If φ is [a, b]-analytic and is in L^2 , then the right member vanishes and therefore $\varphi \in A$. Conversely, if $\varphi \in A$, then for every $\phi \in C_0^2$, we have

$$Re\!\int_{R}\!\!\int_{R}\{f\phi_{\overline{z}}+(af+b\overline{f})\phi\}dxdy\!=\!0.$$

Therefore φ is in $\mathfrak{D}_{\bar{z}}$, and satisfies (1.7). By Theorem 1.1, φ is [a, b]-analytic.

II. σ -harmonic differentials. 1. In this chapter, we consider a generalization of harmonic differentials. Let R be an arbitrary Riemann surface and $\sigma(p)$ be a function of $C^{1+\alpha}$, such that $M \ge \sigma \ge M^{-1} > 0$ on R.

We define the differential operators D, D_1 , and D_2 , as follows: (2.1) $Du = \sqrt{\sigma} du$ for a real function u(p) of C^1 .

(2.2)
$$D_1 \omega = d\left(\frac{1}{\sqrt{\sigma}}\omega\right)$$
 for a real differential $\omega \in C^1$.
 $D_2 \omega = d(\sqrt{\sigma}\omega)$

Definition 2.1. A real differential $\omega \in C^1$ is called σ -harmonic differential if $D_1\omega=0$ and $D_2*\omega=0$ hold.

The condition $D_1\omega=0$ implies that ω is written as $\omega=Du$ locally, and if, moreover, $D_{2^*}\omega=0$, then u(z) satisfies the equation (2.3) $(\sigma u_x)_x+(\sigma u_y)_y=0.$

Definition 2.2. A real function u(p) defined on a domain $\Omega \subset R$ is called σ -harmonic function on Ω , if it satisfies (2.3) in Ω .

2. Let L^2 be the Hilbert space of real differentials square summable on R. Consider the subspaces

(2.4)
$$E = \text{closure of } \{D\phi; \phi \in C_0^2\} \quad \text{in } L^2$$
$$E^* = \text{closure of } \{\frac{1}{\sigma} * D\phi; \phi \in C_0^2\} \quad \text{in } L^2.$$

Lemma 2.1. A differential ω of $C^1 \cap L^2$ is σ -harmonic if and only if $\omega \perp E$ and $\omega \perp E^*$.

Lemma 2.2. The space E and E^* are mutually orthogonal. The statements are easily seen by the relations:

$$(\omega, D\phi) = \iint_{R} \omega \wedge \sqrt{\sigma} * d\phi = \iint_{R} \phi D_{2} * \omega$$

No. 1] Existence of Pseudo-Analytic Differentials on Riemann Surfaces. I

$$\begin{pmatrix} \omega, \frac{1}{\sigma} * D\phi \end{pmatrix} = -\int_{\mathcal{R}} \int_{\mathcal{R}} \omega \wedge \frac{1}{\sqrt{\sigma}} d\phi = \int_{\mathcal{R}} \int_{\mathcal{R}} \phi D_{1} \omega$$

$$\begin{pmatrix} D\phi, \frac{1}{\sigma} * D\phi' \end{pmatrix} = -\int_{\mathcal{R}} \int_{\mathcal{R}} \sqrt{\sigma} d\phi \wedge \frac{1}{\sqrt{\sigma}} d\phi' = -\int_{\mathcal{R}} \int_{\mathcal{R}} d\phi \wedge d\phi' = 0.$$

The orthogonal complement of $E \oplus E^*$ in L^2 is denoted by H.

Lemma 2.3. (Generalization of Weyl's lemma.) All the differentials of H are in $C^{1+\alpha}$, and therefore H is the space of σ -harmonic differentials in L^2 .

Proof. We set

(2.5)
$$a = \frac{\sigma_{\bar{z}}}{2\sigma} \qquad b = \frac{-\sigma_{z}}{2\sigma}.$$

Then the differentials $ad\bar{z}$ and bdz belong to C^{α} . For eveay $\phi = \phi' + i\phi'' \in C_0^2$, we have

$$\begin{split} (\sqrt{\sigma} (\omega + i * \omega), \boldsymbol{D} \overline{\phi}) &= Re \! \int_{R} \! \sqrt{\sigma} (\omega + i * \omega) \wedge i(\phi_{\bar{z}} + a\phi + \overline{b} \overline{\phi}) d\bar{z} \\ &= Re \! \int_{R} \! \sqrt{\sigma} (\omega + i * \omega) \wedge \left\{ i\phi'_{\bar{z}} d\bar{z} - \frac{1}{\sigma} (\sigma\phi'')_{\bar{z}} d\bar{z} \right\} \\ &= \! \int_{R} \! \sqrt{\sigma} \, \omega \wedge * d\phi' - \! \int_{R} \! \omega \wedge \frac{1}{\sqrt{\sigma}} \, d(\sigma\phi''). \\ &= (\omega, D\phi') - \left(\omega, \frac{1}{\sigma} D * (\sigma\phi'')\right). \end{split}$$

Since ϕ' and $\sigma\phi''$ are in C_0^2 , the right member vanishes. This implies that $\sqrt{\sigma}(\omega+i*\omega)$ belongs to A, and hence $\omega \in C^{1+\alpha}$. Thus we have

Theorem 2.1. If ω is a differential of L^2 , then ω is decomposed into

 $(2.6) \qquad \qquad \omega = \omega_h + \omega_1 + \omega_2$

where ω_h is σ -harmonic, $\omega_1 \in E$ and $\omega_2 \in E^*$.

3. To obtain the further results, we shall prove

Lemma 2.4. If $\omega \in E \cap C^1$, then $\omega = Du$ for a function $u \in C^2$. If $\omega \in E^* \cap C^1$, then $\omega = Dv$ for a function $v \in C^2$.

Proof. Suffice it to prove the first statement. Let γ be an arbitrary analytic closed curve on R, and G be a doubly connected domain containing γ as its separating curve and possessing the smooth boundary curves. The right and left subdomains of G are denoted by G^+ and G^- respectively. We can construct a function $f(p) \in C^2(G)$ by

$$f(p) = \begin{cases} 1 & \text{for} \quad p \in G^- \cup \gamma \\ 0 & \text{for} \quad p \in R - G, \end{cases}$$

and a differential $\eta \in C^1$ by

$$\eta = \begin{cases} df & \text{in } G \\ 0 & \text{in } R - G. \end{cases}$$

Since $\omega \in E \cap C^1$, we have

A. SAKAI

[Vol. 39,

$$\left(\omega, \frac{1}{\sqrt{\sigma}}*\eta\right) = -\int_{\mathcal{R}} \omega \wedge \frac{1}{\sqrt{\sigma}} \eta = -\int_{\tau} \frac{1}{\sqrt{\sigma}} \omega.$$

On the other hand, there is a sequence $\{\omega_n\} \subset E$ such that $\omega_n = D\phi_n$ with $\phi_n \in C_0^2$ and $||\omega_n - \omega|| \to 0$ as $n \to \infty$. Since η is closed, we have $\left(\frac{1}{\sqrt{\sigma}}\omega_n, *\eta\right) = -\int_{\mathcal{R}} \int_{\mathcal{R}} d\phi_n \wedge \eta = 0$. Consequently we have $\int_{\tau} \frac{1}{\sqrt{\sigma}} \omega = 0$. It

implies that $\frac{1}{\sqrt{\sigma}}\omega$ is exact and that $\omega = \sqrt{\sigma} du$ with $u \in C^2$.

Lemma 2.5. If $\omega \in C^{1+\alpha}$, then locally $\omega = Du + \frac{1}{\sigma} * Dv$ with $u, v \in C^2$.

Proof. Let V be any neighborhood and |z| < 1 be the parametric disk corresponding to V. If $\omega = p(z)dx + q(z)dy$ in V, then the function $h(z) = \left(\frac{1}{\sqrt{\sigma}}q\right)_x - \left(\frac{1}{\sqrt{\sigma}}p\right)_y$ is in $C^{\alpha}(V)$. We consider the equation (2.7) $\left(\frac{1}{\sigma}v_x\right)_x + \left(\frac{1}{\sigma}v_y\right)_y = h(z).$

For sufficiently small r < 1, we can find a solution $v(z) \in C^2$ in the disk |z| < r. (2.7) implies $D_1\left(\omega - \frac{1}{\sigma} * Dv\right) = 0$, and hence, by the previous lemma, there is a function u(z) in the neighborhood corresponding to |z| < r such that $\omega - \frac{1}{\sigma} * Dv = Du$.

Theorem 2.2. If $\omega \in L^2 \cap C^{1+\alpha}$, then $\omega = \omega_h + Du + \frac{1}{\sigma} * Dv$ with $u, v \in C^2$ and $\omega_h \in H$.

Proof. By Theorem 2.1, we have $\omega = \omega_h + \omega_1 + \omega_2$ with $\omega_h \in H$, $\omega_1 \in E$ and $\omega_2 \in E^*$. By Lemma 2.5, in a small neighborhood of every point of R, we have $\omega = Du_0 + \frac{1}{\sigma} * Dv_0$ with $u_0, v_0, \in C^2(V)$. Set in V,

(2.8)
$$\theta = \omega_n + \omega_1 - Du_0 = -\omega_2 + \frac{1}{\sigma} * Dv_0$$

For every $\phi \in C_0^2(V)$, we have $(\theta, D\phi)_v = 0$ and $\left(\theta, \frac{1}{\sigma}D*\phi\right)_v = 0$. Hence, by Lemma 2.3, θ is in $C^1(V)$. Since $\omega_1 = \theta - \omega_h + Du_0$ and $\omega_2 = \frac{1}{\sigma}*Dv_0$

 $-\theta$, we have $\omega_1, \omega_2 \in C^1$, which prove the theorem.

4. We consider another decomposition. Define the subspace (2.9) \widetilde{E} =closure of $\{Du; u \in C^2\}$ in L^2 .

Let \widetilde{H} be the orthogonal complement of \widetilde{E} in $E \oplus H$. We have Theorem 2.3. If $\omega \in L^2 \cap C^{1+\alpha}$, then ω is decomposed into

(2.10)
$$\omega = \omega_h + Du + \frac{1}{a} * Dv$$

with $u, v \in C^2$ and $\omega_h \in H$, $Du \in \widetilde{E}$ and $\frac{1}{\sigma} * Dv \in E^*$.

(See References of the following article.)