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1. Existence of Pseudo.Analytic Differentials on
Riemann Surfaces. I

By Akira SaaI
(Comm. by Kinjir6 KUNUO, ..g., Jan. 12, 18)

In this paper, we shall prove the existence theorems for (F, G)-
pseudo-analytic differentials in the sence of Bers (Bers, L., _1, [2)
on arbitrary Riemann surfaces, under the condition:

(1) --iFG>O, M>_ IF[- [G[
We consider the differential o=J-Jdu, u being locally a solution of
the partial differential equation
( 2
where being a positive function on Riemann surface. A generali-
zation of Weyl’s lemma for this differential is proved, and the method
of orthogonal projection is used.

I. [a, b-analytic functions and differentials. 1. Let /2 be a
domain of z-plane. A subdomain /20 of/2 is called the compact subdo-

main of /2, if /20f2 and denoted by /2o/2. The class of functions
continuous on /2 (or, which have continuous partial derivatives up to
the n-th order) is denoted by C(/2)(or C(/2)). The class of functions
whose n-th order partial derivatives are all uniformly a-HSlder con-
tinuous (0(a(1) in 2, is denoted by C+(2). The class of functions
of C(t2)(Cn(9), Cn+(tg))which have compact carrier in /2 is denoted
by C0(/2)(C$(f2), C$+(/2)). The class of functions square summable on
every compact subdomain of /2 is denoted by (2).

Definition 1.1. A function f(z) of (2) is said to be in the class
([2), if there exists a function g(z)e([2) such that, for every func-
tion (z) of C3(t?),

ff{f g(z)(z)ldxdy--O

holds. In this case, we write g(z)=f(z).
We note that the condition (1.1) is replaced by

.1)’ Refl{f(z)(z)+ g(z)(z)}dxdy O.(1

Lemma 1.1. If f(z)e([2) and f(z)--O a.e. in 9, then f(z) is
analytic in

Proof. Let/20 be any compact subdomain of/2. Let L(tgo) be the
Hilbert space of the functions square summable on /20, E(f2o) be the
closed subspace of L(/20) spanned by the functions with
The orthogonal complement of E(/20) in L(/2o) is denoted by A(/2o).
We shall prove that all the functions of A(/20) are analytic. If f(z)
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belongs to A(tgo)FlC(tgo), it is analytic. Let J, denote the molifier
(K. O. Friedrichs [3). If f(z) is any function of A(tgo), then

(J.f Cz)-(f J.Oz)--(f (J.))--0
holds for every (z)eC0(2o), and for sufficiently small e. Therefore,
J.f e A(9o), and, since J,f e C2(20), it is analytic. On the other hand,
J.f converges to f(z) in L2(/2o) and hence uniformly in every compact
subdomain of /20. This implies the analyticity of f(z). If
and f(z)-O, then f eL2(tg0) and

(f,

holds for every (z)eC2(tg) and hence we have f(z)eA(9o) which proves
the lemma.

Lemma 1.2. Let [2 be a bounded domain and p(z) be a bounded
measurable function on 9. Set

7 JJ --Z
hen we have
(1) a(z) is in C"(tg), and is bounded in [2.

(2) a(z) is in ([2), and a.(z)-p(z) a.e. in
3 If p(z) C([2), then a(z)

This is the well-known result.

2. Let /2 be a bounded domain and a(z), b(z) be functions of

Definition 1.2. A function f(z) of C([2) is called an [a, b-analytic
function if it satisfies the equation

(1.2) f=af+bf a.e. in [2.

Lemma 1.3. If f(z) is a bounded function of (2) and satisfies
(1.2) a.e. in 9, then f(z) is [a, b-analytic.

Proof. Consider the function
1 ;fl a()f()+b()f()(1.3) (z) f z) + d$d.

Since af-Fbf is bounded, the integral of the right member is in
C"(/2),(/2). We have (z)-0 a.e. in /2. By Lemma 1.1, f(z) is

analytic. Therefore, we have f(z)eC"([2), and hence af-Fbf is in
C’(9), and we have consequently f(z)eC/"([2). This proves the lemma.
(This proof contains the result that the [a, b]-analytic function be-
longs to C+(D).)

Lemma 1.4. (Similarity principle.) If f(z)e([2) and satisfies
(1.2) a.e. in [2, then there exists an analytic function (z) similar
to f(z)" that is, there exists a function S(z) such that

S(z)[
for some constant k, and such that



No. 1] Existence of Pseudo-Analytic Differentials on Riemann Surfaces. I 3

Proof. Let E be the set of points of /2 at which f(z)--O. Set

a(z)+b(z)f(z)/f(z) inp(z)-
[a(z) + b(z) in E.

Then, p(z) is a bounded measurable function in 9. Setting

(1.5) a(z)-- 1 p() dd,

we have a(z) p(z) by Lemma 1.2. We set (z)-S(z)f(z) with
S(z)=e<. Then, we have in I--E, (z)-S(z){f(z)--p(z)f(z)}--S(z)[f
--af --bf}=O and in E, (z)-S(z){f(z)--p(z)f(z)}-S(z){f--af--bf}
--S{f--af--bf}-O. Thus, we have (z)--0 a.e. in 19.

Lemma 1.5. If f(z) )(t2)
then we have, in every compact subdomain

(1.6) f(z)
where ko is a constant depending to 2o.

Proof. Let 3 be the distance between tgo and 3t9. We consider

an arbitrary point zoetgo and the disk K: z-- z01 < -- Define the
2

analytic function (z) of previous lemma. Then we have

f(zo) e(Zo)
ff<=-a J (z) Idxdy

with ko--2k/(J-).
If f(z)e(9) and satisfies (1.2) a.e. in 2, then for any compact

subdomain tg0 of tg, f(z)L2(to) and hence f(z) is bounded on every
compact subdomain of 9. Thus, from Lemma 1.3, we have

Theorem 1.1. If f(z) ([2) and satisfies (1.2) a.e. in [2, then f(z)
is [a, b-analytic in [2.

3. Let R be an arbitrary Riemann surface, and C, C, etc.
be the classes of functions which have the corresponding properties
in every neighborhood. Let a(z)d, b(z)dz be differentials of C.

Definition 1.3. A differential =fdz is called an [a, b-analytic
differential if eC and satisfies the equation

(1.7) f--af+bf
We consider the real Hilbert space L of pure differentials square

summable on R. The inner product is defined by

Ref(1.8) (e, 9’)

We also consider the subspace
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E---closure of {Dp-(+’gpZbO)dz; C} in L.
The orthogonal complement of E in L is denoted by A.

Theorem 1.2. A is the space of a, b-analytic differentials in L.
Proof. Let =fdz be in L, then for every 0eC2, we have

(e, Do-) Refffdz/ + b}d 

2Reff{f+ (afZ7 bf-)}gxdy.

If is a, bJ-analytic and is in L, then the right member vanishes
and therefore e A. Conversely, if e A, then for every e C2, we
have

Reff{f+ (aft- bf-)]dxdy--O.

Therefore is in , and satisfies (1.7). By Theorem 1.1, ( is a, bJ-
analytic.

II. a-harmonic differentials. 1. In this chapter, we consider a
generalization of harmonic differentials. Let R be an arbitrary
Riemann surface and a(p) be a function of Cl/, such that
M-0 on R.

We define the differential operators D, D, and D., as follows:
(2.1) Du=/-Jdu for a real function u(p) of C.
(2.2) Do-- -_o for a real differential o C.

Definition 2.1. A real differential oeC is called a-harmonic

differential if Dw=0 and D.,o--0 hold.
The condition Dw--0 implies that w is written as o=Du locally,

and if, moreover, D.w--0, then u(z) satisfies the equation
(2.3) (au)+(au)--O.

Definition 2.2. A real function u(p) defined on a domain
is called a-harmonic function on 9, if it satisfies (2.3) in 9.

2. Let L be the Hilbert space of real differentials square
summable on R. Consider the subspaces

E =closure of {De; CeC} in L
(2.4) {1.De; C eCg} in L.E*--closure of --Lemma 2.1. A differential o of CL is a-harmonic if and
only if w_kE and w_kE*.

Lemma 2.2. The space E and E* are mutually orthogonal.
The statements are easily seen by the relations:
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] -ffdCA
The orthogonal complement of E(R)E* in L is denoted by H.

Lemma 2.3. (Generaliza$ion of Weyl’s lemma.) All She differ-
entials of H are in C+, and Sherefore H is She space of a-harmonic
differen$ials in L.

Proof. We set

(2.5) a- a b-
2a 2a

Then the differentials ad and bdz belong to C. For eveay

’+i" e C, we have

((+i,), D)--R (+i,)Ai(+a+b)d

=ff -ff *

( 1(, ’)- , ,(,,).

Since ’ and a" are in Cg, the right member vanishes. his implies
that 7(+i,) belongs to A, and hence C*. hus we have

heorem 2.1. If i gieetial of L, the i geeompoeg
to
(2.6) -++
where is a-harmonic, eE and eE*.

3. To obtain the further results, we shall prove
Lemma 2.4. If weEC, hen w--Du for a function ueC. If

weE*C, then w--Dr for a function veC.
Proof. Suffice it to prove the first statement. Let be an

arbitrary analytic closed curve on R, and G be a doubly connected
domain containing as its separating curve and possessing the smooth
boundary curves. The right and left subdomains of G are denoted
by G and G- respectively. We can construct a function f(p)
by

f()- or R-,
and a differential eC by

{f in G- in R--G.
Since eNC, we have
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( 1)_ff 1 fl
On the other hand, there is a sequenee {}N such that --D

with sCg and I1  - 11 0 as . 8inee is closed, we have

(1)_ff fl,, = dA-0. Consequently we have

1 is exact and that =du with ueC.implies that

Lemma 2.. If C , the loeall --D+ ,Dv ith , v .
Proof. Let V be any neighborhood and z[ <1 be the parametric

disk corresponding to V. If oo--p(z)dx+q(z)dy in V, then the func-

(1) (,)tion h(z) --q -p-- is in C(V). We consider the equation

For sufficiently small r< 1, we can find a solution v(z) e C in the

disk <fo (2.7) implies D o)--,Dv --0, and hence, by the pre-
o’

vious lemma, there is a function u(z) in the neighborhood correspond-
1ing to z] < r such that -- .Dv--Du.Theorem 2.2. If o e L C , then oo--o+Du+ 1 .Dr with

u, veC and oeH.
Proof. By Theorem 2.1, we have o--w+w+o, with weH, oeE

and weE*. By Lemma 2.5, in a small neighborhood of every point

of R, we have o=Du0+ 1--.Dvo with Uo, v0, eC(V). Set in V,

(2.8) O--o+o--Duo-- --o.+ l__,Dvo.
For every C(V), we have (O,D)--0 and (O,--D. -0. Hence,

\
1by Lemma 2.3, O is in C*(V). Since o, O %.+Duo and

--0, we have , o.C, which prove the theorem.
4. We consider another decomposition. Define the subspace

(2.9) =closure of {Du;ueC] in L.
Let H be the orthogonal complement of E in E(R)H. We have

Theorem 2.3. If ooeLC/, then o is decomposed into

(2.10) o--o+Du+ 1--.Dv

with u, veC and oeH, Duel and .Dvel E*.

(See References of the following article.)


