1. Existence of Pseudo.Analytic Differentials on Riemann Surfaces. ^I

By Akira SAKAI

(Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1963)

In this paper, we shall prove the existence theorems for (F, G) pseudo-analytic differentials in the sence of Bers (Bers, L., $[1], [2]$) on arbitrary Riemann surfaces, under the condition:

(1) $-i\bar{F}G>0, \quad M \geq |F|+|G| \geq M^{-1}>0.$ We consider the differential $\omega = \sqrt{\sigma} du$, u being locally a solution of the partial differential equation

 $(\sigma u_x)_x+(\sigma u_y)_y=0,$ (2) where σ being a positive function on Riemann surface. A generalization of Weyl's lemma for this differential is proved, and the method of orthogonal projection is used.

I. $[a, b]$ -analytic functions and differentials. 1. Let Ω be a domain of z-plane. A subdomain Ω_0 of Ω is called the compact subdomain of Ω , if $\overline{Q}_0 \subset \Omega$ and denoted by $\Omega_0 \subset \Omega$. The class of functions continuous on Ω (or, which have continuous partial derivatives up to the *n*-th order) is denoted by $C(\Omega)$ (or $C^{n}(\Omega)$). The class of functions whose *n*-th order partial derivatives are all uniformly α -Hölder continuous $(0<\alpha<1)$ in Ω , is denoted by $C^{n+\alpha}(\Omega)$. The class of functions of $C(\Omega)(C^n(\Omega), C^{n+\alpha}(\Omega))$ which have compact carrier in Ω is denoted by $C_0(\Omega)(C_0^n(\Omega), C_0^{n+\alpha}(\Omega))$. The class of functions square summable on every compact subdomain of Ω is denoted by $\mathcal{R}^2(\Omega)$.

Definition 1.1. A function $f(z)$ of $\mathbb{S}^2(\Omega)$ is said to be in the class $\mathcal{D}_{\bar{z}}(Q)$, if there exists a function $g(z) \in \mathbb{S}^2(\Omega)$ such that, for every function $\phi(z)$ of $C_0^2(\Omega)$,

(1.1)
$$
\iint_{a} \{f(z)\phi_{z}(z)+g(z)\phi(z)\}dxdy=0
$$

holds. In this case, we write $g(z) = f_{\overline{z}}(z)$.

We note that the condition (1.1) is replaced by

(1.1)'
$$
Re \int_{\stackrel{\circ}{\rho}} \int [f(z)\phi_{\bar{z}}(z) + g(z)\phi(z)]dxdy = 0.
$$

Lemma 1.1. If $f(z) \in \mathcal{D}_z(\Omega)$ and $f_z(z)=0$ a.e. in Ω , then $f(z)$ is analytic in Ω .

Proof. Let Ω_0 be any compact subdomain of Ω . Let $L^2(\Omega_0)$ be the Hilbert space of the functions square summable on Q_0 , $E(Q_0)$ be the closed subspace of $L^2(\Omega_0)$ spanned by the functions ϕ_z with $\phi \in C_0^2(\Omega)$. The orthogonal complement of $E(Q_0)$ in $L^2(Q_0)$ is denoted by $A(Q_0)$. We shall prove that all the functions of $A(Q_0)$ are analytic. If $f(z)$ $2 \qquad A. \text{SAKAI}$ [Vol. 39,

belongs to $A(\Omega_0)\cap C^1(\Omega_0)$, it is analytic. Let J_* denote the molifier (K. O. Friedrichs [3]). If $f(z)$ is any function of $A(\Omega_0)$, then $(J_{\epsilon}f, \phi_{\epsilon})=(f, J_{\epsilon}\phi_{\epsilon})=(f, (J_{\epsilon}\phi)_{\epsilon})=0$

holds for every $\phi(z) \in C_0^2(\Omega_0)$, and for sufficiently small ε . Therefore, $J_{\epsilon} f \in A(\Omega_0)$, and, since $J_{\epsilon} f \in C^2(\Omega_0)$, it is analytic. On the other hand, $J_{\epsilon}f$ converges to $f(z)$ in $L^2(Q_0)$ and hence uniformly in every compact subdomain of Ω_0 . This implies the analyticity of $f(z)$. If $f(z) \in \mathcal{D}_z(\Omega)$ and $f_{\bar{z}}(z)=0$, then $f \in L^2(\Omega_0)$ and

$$
(f,\bar{\phi}_z) = \int_{a} f \phi_z dx dy = 0
$$

holds for every $\phi(z) \in C_0^2(\Omega)$ and hence we have $f(z) \in A(\Omega_0)$ which proves the lemma.

Lemma 1.2. Let Ω be a bounded domain and $\rho(z)$ be a bounded measurable function on Ω . Set

$$
\sigma(z) = -\frac{1}{\pi} \int_{\alpha} \int \frac{\rho(\zeta)}{\zeta - z} d\xi d\eta,
$$

hen we have

(1) $\sigma(z)$ is in $C^{\alpha}(\Omega)$, and is bounded in Ω . (2) $\sigma(z)$ is in $\mathcal{D}_z(\Omega)$, and $\sigma_z(z) = \rho(z)$ a.e. in Ω . (3) If $\rho(z) \in C^{\alpha}(\Omega)$, then $\sigma(z) \in C^{1+\alpha}(\Omega)$. This is the well-known result.

2. Let Ω be a bounded domain and $a(z)$, $b(z)$ be functions of $C^{\alpha}(\Omega)$.

Definition 1.2. A function $f(z)$ of $C^1(\Omega)$ is called an [a, b]-analytic function if it satisfies the equation

$$
(1.2) \t\t f_{\bar z}=af+b\bar f \quad a.e. \text{ in } \Omega.
$$

Lemma 1.3. If $f(z)$ is a bounded function of $\mathcal{D}_z(\Omega)$ and satisfies (1.2) a.e. in Ω , then $f(z)$ is [a, b]-analytic.

Proof. Consider the function

(1.3)
$$
\varphi(z) = f(z) + \frac{1}{\pi} \int_{a} \int_{a} \frac{a(\zeta) f(\zeta) + b(\zeta) \overline{f(\zeta)}}{\zeta - z} d\zeta d\eta.
$$

Since $af+b\overline{f}$ is bounded, the integral of the right member is in $C^{\alpha}(\Omega) \cap \mathbb{D}_{\bar{z}}(\Omega)$. We have $\varphi_{\bar{z}}(z)=0$ a.e. in Ω . By Lemma 1.1, $\varphi(z)$ is analytic. Therefore, we have $f(z) \in C^{\alpha}(\Omega)$, and hence $af + b\overline{f}$ is in $C^{\alpha}(\Omega)$, and we have consequently $f(z) \in C^{1+\alpha}(\Omega)$. This proves the lemma. (This proof contains the result that the $[a, b]$ -analytic function belongs to $C^{1+\alpha}(\Omega)$.)

Lemma 1.4. (Similarity principle.) If $f(z) \in \mathcal{D}_z(\Omega)$ and satisfies (1.2) a.e. in Ω , then there exists an analytic function $\varphi(z)$ similar to $f(z)$: that is, there exists a function $S(z)$ such that

$$
0 < k^{-1} \leq |S(z)| \leq k
$$

for some constant k , and such that

No. 1] Existence of Pseudo-Analytic Differentials on Riemann Surfaces. I 3

(1.4)
\n*Proof.* Let *E* be the set of points of *Q* at which
$$
f(z)=0
$$
. Set
\n
$$
\rho(z) = \begin{cases}\na(z) + b(z)\overline{f(z)}/f(z) & \text{in } Q - E. \\
a(z) + b(z) & \text{in } E.\n\end{cases}
$$

Then, $\rho(z)$ is a bounded measurable function in Ω . Setting

(1.5)
$$
\sigma(z) = \frac{1}{\pi} \int_{\Omega} \int \frac{\rho(\zeta)}{\zeta - z} d\xi d\eta,
$$

we have $\sigma_{\tilde{z}}(z) = -\rho(z)$ by Lemma 1.2. We set $\varphi(z) = S(z)f(z)$ with $S(z) = e^{c(z)}$. Then, we have in $\Omega - E$, $\varphi_z(z) = S(z) \{f_z(z) - \rho(z)f(z)\} = S(z) \{f_z(z) - \rho(z)f(z)\}$ $-a f - b \bar{f} = 0$ and in E, $\varphi_i(z) = S(z) \{f_z(z) - \rho(z)f(z)\} = S(z) \{f_z - af - bf\}$ $=S{f_{\bar{z}}-af-b\bar{f}]=0}$. Thus, we have $\varphi_{z}(z)=0$ a.e. in Ω .

Lemma 1.5. If $f(z) \in \mathcal{D}_z(\Omega) \cap L^2(\Omega)$ and satisfies (1.2) a.e. in Ω , then we have, in every compact subdomain Ω_0 of Ω , (1.6) $|f(z)| \leq k_0 ||f||_q$

where k_0 is a constant depending to Ω_0 .

Proof. Let δ be the distance between Ω_0 and $\partial\Omega$. We consider an arbitrary point $z_0 \in \Omega_0$ and the disk $K: |z-z_0| \leq \frac{\delta}{2}$. Define the analytic function $\varphi(z)$ of previous lemma. Then we have $|f(z_0)|^2 \leq k^2 |\varphi(z_0)|^2$ analytic function $\varphi(z)$ of previous lemma. Then we have

$$
|f(z_0)|^2 \leq k^2 |\varphi(z_0)|^2
$$

\n
$$
\leq \frac{4k^2}{\pi \delta^2} \iint_K |\varphi(z)|^2 dx dy
$$

\n
$$
\leq \frac{4k^4}{\pi \delta^2} \iint_K |\, f(z)|^2 dx dy \leq k_0^2 ||f||_p^2
$$

\n
$$
\overline{\pi} \, \delta.
$$

with $k_0=2k^2/(\sqrt{\pi}\,\delta)$.

If $f(z) \in \mathcal{D}_z(\Omega)$ and satisfies (1.2) a.e. in Ω , then for any compact subdomain Ω_0 of Ω , $f(z) \in L^2(\Omega_0)$ and hence $f(z)$ is bounded on every compact subdomain of Ω . Thus, from Lemma 1.3, we have

Theorem 1.1. If $f(z) \in \mathcal{D}_z(\Omega)$ and satisfies (1.2) a.e. in Ω , then $f(z)$ is $[a, b]$ -analytic in Ω .

3. Let R be an arbitrary Riemann surface, and C, C^n, \cdots etc. be the classes of functions which have the corresponding properties in every neighborhood. Let $a(z)d\overline{z}$, $b(z)dz$ be differentials of C^* .

Definition 1.3. A differential $\varphi = fdz$ is called an [a, b]-analytic differential if $\varphi \in C^1$ and satisfies the equation

$$
(1.7) \t\t f_{\tilde{z}} = af + b\overline{f}.
$$

We consider the real Hilbert space L^2 of pure differentials square summable on R . The inner product is defined by

(1.8)
$$
(\varphi, \varphi') = Re \int_R \varphi \wedge * \overline{\varphi}', \quad \varphi, \varphi' \in L^2.
$$

We also consider the subspace

4 A. SAKAI [Vol. 39,

 $\boldsymbol{E} = \text{closure of } \{ \boldsymbol{D} \phi = (\phi_* + \overline{a} \phi + b \overline{\phi}) dz; \ \phi \in C_0^2 \}$ in \boldsymbol{L}^2 . The orthogonal complement of E in L^2 is denoted by A .

Theorem 1.2. A is the space of $[a, b]$ -analytic differentials in L^2 .

Proof. Let $\varphi = fdz$ be in L^2 , then for every $\varphi \in C_0^2$, we have

(1.9)
$$
(\varphi, \mathbf{D}\bar{\phi}) = Re \iint_R f dz \wedge i \{\bar{\phi}_z + \bar{a}\bar{\phi} + b\phi\} d\bar{z}
$$

$$
= 2Re \iint_R \{f \phi_{\bar{z}} + (af + b\bar{f})\phi\} dxdy.
$$

If φ is [a, b]-analytic and is in L^2 , then the right member vanishes and therefore $\varphi \in A$. Conversely, if $\varphi \in A$, then for every $\varphi \in C_0^2$, we have

$$
Re\int\limits_R \{f\phi_{\bar z}+(af+b\bar f)\phi\}dxdy\!=\!0.
$$

Therefore φ is in $\mathfrak{D}_{\bar{z}}$, and satisfies (1.7). By Theorem 1.1, φ is [a, b]analytic.

II. σ -harmonic differentials. 1. In this chapter, we consider a generalization of harmonic differentials. Let R be an arbitrary Riemann surface and $\sigma(p)$ be a function of $C^{1+\alpha}$, such that $M \ge \alpha \ge$ $M^{-1} > 0$ on R.

We define the differential operators D, D_1 , and D_2 , as follows: (2.1) $Du=\sqrt{\sigma} du$ for a real function $u(p)$ of C^1 .

(2.2)
$$
D_1 \omega = d \left(\frac{1}{\sqrt{\sigma}} \omega \right)
$$
 for a real differential $\omega \in C^1$.
\n $D_2 \omega = d(\sqrt{\sigma} \omega)$

Definition 2.1. A real differential $\omega \in C^1$ is called *o*-harmonic differential if $D_1\omega=0$ and $D_2*\omega=0$ hold.

The condition $D_1\omega=0$ implies that ω is written as $\omega=D\omega$ locally, and if, moreover, $D_2 * \omega = 0$, then $u(z)$ satisfies the equation (2.3) $(\sigma u_x)_x + (\sigma u_y)_y = 0.$

Definition 2.2. A real function $u(p)$ defined on a domain $\Omega \subset R$ is called σ -harmonic function on Ω , if it satisfies (2.3) in Ω .

2. Let L^2 be the Hilbert space of real differentials square summable on R . Consider the subspaces

(2.4)
$$
E = \text{closure of } \{D\phi; \phi \in C_0^2\} \quad \text{in } L^2
$$

$$
E^* = \text{closure of } \left\{\frac{1}{\sigma} * D\phi; \phi \in C_0^2\right\} \quad \text{in } L^2.
$$

Lemma 2.1. A differential ω of $C^1 \cap L^2$ is *o*-harmonic if and only if $\omega \perp E$ and $\omega \perp E^*$.

Lemma 2.2. The space E and E^* are mutually orthogonal. The statements are easily seen by the relations:

$$
(\omega, D\phi) = \iint\limits_R \omega \wedge \sqrt{\sigma} * d\phi = \iint\limits_R \phi D_2 * \omega
$$

No. 1] Existence of Pseudo-Analytic Differentials on Riemann Surfaces. I 5

$$
\left(\omega, \frac{1}{\sigma} * D\phi\right) = -\int_R \omega \wedge \frac{1}{\sqrt{\sigma}} d\phi = \int_R \phi D_1 \omega
$$

$$
\left(D\phi, \frac{1}{\sigma} * D\phi'\right) = -\int_R \sqrt{\sigma} d\phi \wedge \frac{1}{\sqrt{\sigma}} d\phi' = -\int_R d\phi \wedge d\phi' = 0.
$$

The orthogonal complement of $E \oplus E^*$ in L^2 is denoted by H.

Lemma 2.3. (Generalization of Weyl's lemma.) All the differentials of H are in $C^{1+\alpha}$, and therefore H is the space of σ -harmonic differentials in L^2 .

Proof. We set

(2.5)
$$
a = \frac{\sigma_{\bar{z}}}{2\sigma} \qquad b = \frac{-\sigma_{z}}{2\sigma}.
$$

Then the differentials $ad\bar{z}$ and bdz belong to C^{α} . For eveay $\phi =$ $\phi' + i\phi'' \in C_0^2$, we have

$$
\begin{split}\n\langle \sqrt{\sigma} \cdot \langle \phi'' \rangle \rangle \langle \phi \rangle \langle \phi
$$

Since ϕ' and $\sigma\phi''$ are in C_0^2 , the right member vanishes. This implies that $\sqrt{\sigma(\omega + i\ast \omega)}$ belongs to A, and hence $\omega \in C^{1+\alpha}$. Thus we have that $\sqrt{\sigma}(\omega+i\omega)$ belongs to A, and hence $\omega \in C^{1+\alpha}$. Thus we have

Theorem 2.1. If ω is a differential of L^2 , then ω is decomposed into $int_0^L (2.6)$ $\omega = \omega_h + \omega_1 + \omega_2$
where ω_h is a-harmonic, $\omega_1 \in E$ and $\omega_2 \in E^*$.

3. To obtain the further results, we shall prove

Lemma 2.4. If $\omega \in E \cap C^1$, then $\omega = Du$ for a function $u \in C^2$. If $\omega \in E^* \cap C^1$, then $\omega = Dv$ for a function $v \in C^2$.

Proof. Suffice it to prove the first statement. Let γ be an arbitrary analytic closed curve on R , and G be a doubly connected domain containing γ as its separating curve and possessing the smooth boundary curves. The right and left subdomains of G are denoted by G^+ and G^- respectively. We can construct a function $f(p) \in C^2(G)$ by

$$
f(p) = \begin{cases} 1 & \text{for} \quad p \in G^- \cup \gamma \\ 0 & \text{for} \quad p \in R - G, \end{cases}
$$

and a differential $\eta \in C^1$ by

$$
\eta = \begin{cases} df & \text{in} & G \\ 0 & \text{in} & R - G. \end{cases}
$$

have

Since $\omega \in E \cap C^1$, we have

6 A. SAKAI [Vol. 39,

$$
\left(\omega,\frac{1}{\sqrt{\sigma}}*\eta\right)=-\int_{\mathcal{R}}\omega\wedge\frac{1}{\sqrt{\sigma}}\eta=-\int_{\gamma}\frac{1}{\sqrt{\sigma}}\omega.
$$

On the other hand, there is a sequence $\{\omega_n\} \subset E$ such that $\omega_n = D\phi_n$ with $\phi_n \in C_0^2$ and $||\omega_n - \omega|| \to 0$ as $n \to \infty$. Since γ is closed, we have $\left(\frac{1}{\sqrt{\sigma}} \omega_n, * \eta\right) = -\int \int d\phi_n \wedge \eta = 0.$ Consequently we have $\int \frac{1}{\sqrt{\sigma}} \omega = 0.$ It

implies that $\frac{1}{\sqrt{g}}\omega$ is exact and that $\omega=\sqrt{\sigma} du$ with $u \in C^2$.

Lemma 2.5. If $\omega \in C^{1+\alpha}$, then locally $\omega = Du + \frac{1}{\sigma} *Dv$ with $u, v \in C^2$.
Proof. Let V be any neighborhood and $|z| < 1$ be the parametric

Proof. Let V be any neighborhood and $|z| < 1$ be the parametric disk corresponding to V. If $\omega = p(z)dx + q(z)dy$ in V, then the function $h(z) = \left(\frac{1}{\sqrt{\sigma}}q\right)_x - \left(\frac{1}{\sqrt{\sigma}}p\right)_y$ is in $C^*(V)$. We consider the equation

(2.7) $\left(\frac{1}{\sigma}v_x\right)_x + \left(\frac{1}{\sigma}v_y\right)_y = h(z)$.

For sufficiently small $r < 1$, we can find a solution $v(z) \in C^2$ in the (2.7)

For sufficiently small $r < 1$, we can find a solution $v(z) \in C^2$ in the disk $|z| < r$. (2.7) implies $D_1\left(\omega - \frac{1}{\sigma} *Dv\right) = 0$, and hence, by the previous lemma, there is a function $u(z)$ in the neighborhood corresponding to $|z| < r$ such that $\omega - \frac{1}{\sigma}$

to $|z| < r$ such that $\omega - \frac{1}{\sigma} * Dv = Du$.
Theorem 2.2. If $\omega \in L^2 \cap C^{1+\alpha}$, then $\omega = \omega_n + Du + \frac{1}{\sigma} * Dv$ with $u, v \in C^2$ and $\omega_h \in H$.

Proof. By Theorem 2.1, we have $\omega = \omega_h + \omega_1 + \omega_2$ with $\omega_h \in H$, $\omega_1 \in E$ and $\omega_2 \in E^*$. By Lemma 2.5, in a small neighborhood of every point of R, we have $\omega = Du_0 + \frac{1}{\sigma} * Dv_0$ with $u_0, v_0, \in C^2(V)$. Set in V,

(2.8)
$$
\theta = \omega_{h} + \omega_{1} - Du_{0} = -\omega_{2} + \frac{1}{\sigma} * Dv_{0}.
$$

For every $\phi \in C_0^2(V)$, we have $(\theta, D\phi)_v = 0$ and $\left(\theta, \frac{1}{\sigma} D * \phi\right)_v = 0$. Hence, by Lemma 2.3, θ is in $C^1(V)$. Since $\omega_1 = \theta - \omega_2 + Du_0$ and $\omega_2 = \frac{1}{\sigma}$

 $-\theta$, we have $\omega_1, \omega_2 \in C^1$, which prove the theorem.

4. We consider another decomposition. Define the subspace (2.9) \widetilde{E} =closure of $\{Du;u\in C^2\}$ in L^2 .

Let \widetilde{H} be the orthogonal complement of \widetilde{E} in $E\oplus H$. We have Theorem 2.3. If $\omega \in L^2 \cap C^{1+\alpha}$, then ω is decomposed into

$$
(2.10) \t\t\t\t\t\omega = \omega_{\hbar} + Du + \frac{1}{a} * Dv
$$

with $u, v \in C^2$ and $\omega_h \in H$, $Du \in \widetilde{E}$ and $\frac{1}{a} * Dv \in E^*$.

(See References of the following article.)