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50. On the Maximum Principle for Quasi.linear Parabolic
Equations of the Second Order

By Takai KUSANO
Chuo University, Tokyo

(Comm. by Kinjir5 KUNUGI, M.J.A., April 12, 1963)

Introduction. In this note we shall discuss the maximum-minimum
property of solutions of general quasi-linear parabolic equations of the
second order. For linear parabolic equations such property, known
as the maximum principle, has been exhaustively exploited and has
been playing an essential part in the study of both linear and non-
linear parabolic equations. As is well known, the strongest results
in this connection have been given by Nirenberg [4J. It seems, how-
ever, that the maximum-minimum property for quasi-linear parabolic
equations has hitherto been investigated unsatisfactorily and that the
deeper investigation might enable us to establish results of more or
less use.

The main purpose of this note is to give an extension of the
so-called "strong maximum principle" established by Nirenberg
to the case of quasi-linear parabolic equations. Section 2 is devoted
to this extension. We note here that this is an analogue of the
maximum principle proved by the author [5. In section 1 we for-
mulate without proofs a very simple maximum principle and some
of its consequences. In both sections from the maximum principles
immediately follow the uniqueness theorems for the first boundary
value problem and the Harnack type convergence theorems.

Let D denote a bounded domain in the (n+l)-dimensional (x, t)-
space, bounded by two hyperplanes t--0 and t--T>0, and by a surface

S lying between these hyperplanes. D denotes the closure of D, B
the lower basis of D’B--D[{t--O}, and 3D the normal boundary of
D consisting of S and B.

Quasi-linear parabolic equations we are concerned with are of the
type

( 1 ) a(x, t, u, grad u) 2u u f(x, t, u, grad u)xx t
(x-- (x,. ., x.), grad u-- (u/x,..., u/x)).

The functions aq(x, t, u, p) and f(x, t, u, p) are defined in the domain
[(x, t) D, u , II P I[ and are bounded in any compact subset of. By a solution of the first boundary value problem for the equa-

tion (1) we mean a function u(x, t) which is continuous in D, bounded
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with its derivatives appearing in (1) in D and satisfies the equation

in D--D as well as the boundary condition given on D:
( 2 u t).

1. A maximum principle. We shall begin with a very simple
maximum principle and some of its consequences. The proofs will be
omitted.

Theorem 1. We make the following assumptions on (1):
i) The quadratic form , a(x, t, u, p)$$ is positive definite tbr

,.=I

every (x, t, u, p) e and for every real vector
ii) f(x,t, u, O) is positive for positive u.
Then any solution u(x,t) of (1) cannot attain its positive maxi-

mum in D--3D.

Corollar 1. Let the following assumptions be satisfied:
i) a(x, t, u, p)$$ is positive definite;

,j=l

ii) f(x,t, u, 0) satisfies one of the following conditions:
a) sign u.f(x,t,u, 0)>-0 for all (x,t,u) under consideration;
b) f(x, t, u, O) -< L u with a positive constant L;
c) f(x, t, u, 0)--f(x, t, u, 0)+f2(x, t, u, 0) with

sign u.fl(,t,u,O)>=O and
Under these assumptions we conclude that u(x, t) vanishes identi-

cally in D if it vanishes on the normal boundary 3D of D.
Corollary 2.1> The first boundary value problem (1), (2) has at

most one solution, provided that the following conditions are valid:
i) aj(x,t,u, p) satisfy the Lipschitz condition with respect to u

and the form aj(x,t, u, p)$ is positive definite;
,J=l

ii) f(, t, u, p) is subjected to either of the following:
a) f(, t, u, 0) is non-decreasing with respect to u;
b) f(x,t,u,p) satisfies the Lipschitz condition with respect

to u.

Corollar 3. Under the same assumptions as in Corollary 2 the
Harnack type convergence theorem holds. Let indeed u(x,t) be a
sequence of solutions of the equation (1) defined in the domain D.
Then, it converges uniformly in the whole domain D if it converges
uniformly on the normal boundary 3D of D.

2. A strong maximum principle. In this section we shall
generalize the "strong maximum principle" of Nirenberg to the case
of quasi-linear parabolic equation (1). Following Nirenberg we begin
with a more general equation of the form

[3].
1) A better uniqueness theorem has been obtained by Kaminin and Maslennikova
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2u a 3u u(3) ai 2u
_
,b,+ + b --f.-- xx----- .= tt x

where the functions a,, a,, b,,, b,, f may depend not only on
x=(x,..., x), t--(t,..., t) but on u and Vu-(3u/x,...,
We assume that all these functions are defined in the domain
’{(x,t)eG, u[<, [q][<} (G is a domain in (n+m)-space and q
is an (n+m)-tuple of real numbers), and are bounded in any compact
subset in F and that they are subjected to the following restrictions:

I) There exists a lower semi-continuous function h(x, t, u,
such that

for every (x, t, u, q)e and every real vector $, while the quadratic

form b,(x, t, u, q),, is positive semi-definite;, =1
III) f(, t, u, q) satisfies locally the Lipschitz condition with respect

to u and q; that is, we have
If(x, t, u, q)-- f(x, t, u’, q’)l g(u--u’]+[ q--q’

with a positive K=K(9, M, N) depending only on 9, M and N when-
ever (x,t) varies in any compact subset 9 and ]u], [u’]M and

Theorem 2. Let the assumptions mentioned above be fulfilled
and let a solution u(x, t) of (3) attain its non-negative maximum
G at some interior point Po of G. Then we have u(x,t)U(Po) in
the component in G of the hyperplanes t--const. (-l,...,m)
through the point Po.

For simplicity it is enough to deal with the case n--m--l"

A u=:+B + + =f, A>h>O, B>0.x t x t
The proof is essentially based on the following lemma.

Lemma. Let C be a closed circle contained in G and let P
=(x,t) be a point on its circumference where the solution u(x,t)
achieves its non-negative maximum. Then, the abscissa x of P
equal to that of center of the circle C.

Proof of Lemma. We may assume that P is the only one maxi-
mum point on the circumference of C and that the origin of the
coordinate system is situated at the center of C. Let R be the radius
of C. Assuming x#0 we derive an absurdity. We draw a circle

C with center P and radius less than R. Define the function v(x, t) by
v(x, t)- u(x, t) + t),
v(x, t)--exp (--k(x+t))--exp (--kR)

where e>0, k>0 are constants. As is easily seen, if e is sufficiently
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small v(x,t)is less than or equal to u(P1) on the boundary of CNC.
Hence, max v(x,t)>_u(P) is attained at some point P(x,t)of CNC.
Applying the linear parabolic operator-A(x, t, u(x, t), Vu(x, t))-x2 -k B(x, t, u, + b

to the function v we have, on the one hand, v(P)gO in view of
the fact that v assumes its maximum at P. On the other hand, it
follows from the assumptions of the lemma and the relations u(P)
u(P) e exp(--k(x+t)), ][ Vu(P) 2keX+t exp(--k(x+t)) that
v(P) u(P)Wev(P) f(P, u(P), Vu(P))+ev(P)

--K([u(P)--u(P)[+ ]] Vu(P)]]
e exp (-- k(x+t))4k2(Ax+Bt)

The coefficient of k in the bracket of the last expression remains
bounded away from zero and hence we finally have v(P)>O for
sufficiently large k. This desired absurdity proves our lemma.

Once the lemma has been established, we can proceed in an
entirely the same way as in Nirenberg’s paper 4 to complete the
proof of Theorem 2.

We now turn to the strong maximum principle for the equation (1).
Theorem 3. Consider the equation (1) concerning which the

following conditions are satisfied:
I) There exists lower semi-continuous function h(x, t, u, p) > 0

such that

i,=l

for every (x, t, u, p)e and every real vector ;
II) f(x, t, u, O)O for u0;

III) f(x,t,u,p) satisfies locally the Lipschitz condition with re-
spect to u and p.
Let a solution u(x, t) of (1) in D assume its positive maximum at
some point Po on the upper basis of the domain D and let S(Po)
denote the set of points of D that may be connected with Po by a
simple curve in D along which the t coordinates change monotonically.
Then u(x,t)u(Po) in S(Po).

It suffices to give the proof for the case n--1 and it also suffices
to prove the following

Theorem 3’. Let u(x, t) be a solution of the equation

(1’) A(x, t, U, Ux) 2u 3u f(x, $, u, u)

defined and continuous in the rectangle Q" {[x[r, t. tgt0} and let
u(x, t) assume its positive maximum at the center Po of the top line.
Then u(x,t)u(Po) in Q.
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Proof of Theorem 3’. It follows from Theorem 2 that u=--u(Po)
on the top line of Q. Assume for contradiction that there exists a
point PeQ such that u(P)<u(Po). Under this assumption it is easy
to construct a rectangle R" {Ix[_<_ro, t _<_ t_<_ to}, 0r0l, such that

u(x,t) is less than u(Po) everywhere in R except on its top line. We
show that this situation is impossible by introducing a function em-
ployed by II’in, Kalashnikov and 01einik [2. Define a function V(x, t)
by

V(x, t)-m--(m--m)(r--x) exp (--k(t--t))--u(x, t),
where m=u(Po), m is a non-negative constant such that u(x,t)
mm and k is a positive constant. As we immediately observe
V(x, t) is non-negative on the lateral sides and on the lower line of
R, while it takes strictly negative values on the top line. Therefore

rain V(x, t) O. Let P(5, t) be a point of minimum of V(x, t). Clearly
R

u(-2, t)>m>=O.
If we operate the operator

--A(x, t, u(x, t), Ux(X, t)) -. t
on the function V(x, t), we have .V(P)>=O. On the other hand,

V(P)-- --(m--m)[SAS--4A(r]--5)+ k(r---2) exp (--k(t--t))
--(f(P, u(P), u(P))--f(P, u(P), O))-- f(P, u(P), 0).

Paying attention to the assumptions of the theorem and to an equality

u(P)--4(m--m)5(r]--5) exp (--k(t--t)) resulting from V(P)--O, we
finally obtain

_V(P)< --(m--m)[8A--4(A -t- L )(r--)
+k(r]--)] exp (--k(t--t)).

The function 8Ax--4(A--L]x])(r--x)+k(r--x) can be shown
to be made positive in R for sufficiently large with k the aid of the
reasoning similar to that presented in [2. We are thus lead to a
contradiction and the theorem is proved.

Corollary 1. Let the following conditions be satisfied:

I) a(x, t, u, p)$$>=h(x, t, u, p)1]
,=1

II) sign u. f(x, t, u, 0) ! 0;
III) f(x, t, u, p) satisfies locally the Lipschiz condition with re-

spect to u and p.

Then for any solution u(x, t) of (1) continuous in D

lu(x,t)lC=maxlu(x,t)l, (x,t)D--D.

The equality sign can be removed in case u is not constant.
Corollary 2. Consider the equation
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a aq(x, t, grad u) 2u u -f(x, t, u, grad u)

under the conditions:
I) There exists a lower semi-continuous function h(x, t, p)>O

such that

II) a(x, t, p) satisfy locally the Lipschitz condition with respect
to p;

III) f(x, t, u, p) is non-decreasing with respect to u;
IV) f(x, t, u, p) satisfies locally the Lipschitz condition with re-

spect to u and p.
Under these assumptions we can assert that the boundary value

problem (4), (2) has at most one solution.
Corollary . Let the same assumptions as in Corollary 2 be

satisfied with regard to the equation (4)and let u(x, t)be a sequence

of solutions defined and continuous in D. Then, u(x, t) converges
uniformly in D if it converges uniformly on the normal boundary
D olD.

At the end of this note the author wishes to express his deepest
gratitude to Professor Masuo Hukuhara for his incessant leadership
and encouragement. He also has to appreciate gratefully the valuable
criticisms and advices given by Professor Yoshikazu Hirasawa.

References

Hopf: Elementare Bemerkungen fiber die LSsungen partieller Differential-
gleichungen yore elliptischen Typus, Sitzungsberichte Preuss. Akad. Wiss., 19,
147-152 (1927).

A. M. II’in, A. S. Kalashnikov, and O. A. Oleinik: Linear second order equations
of parabolic type, Uspekhi Matem. Nauk, 17, 3(105), 3-146 (1962).

L. I. Kaminin and V. N. Maslennikova: On the solution of the first boundary
problem in the large for a quasi-linear parabolic equation, Dokl. Akad. Nauk
SSSR, 137, 1049-1053 (1961).

L. Nirenberg: A strong maximum principle for parabolic equations, Comm. Pure
Appl. Math., 6, 167-177 (1953).

T. Kusano: On a maximum principle for quasi-linear elliptic equations, Proc.
Japan Acad., 38, 78-81 (1962).


