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130. On an Example of Non-uniqueness of Solutions
of the Cauchy Problem for the Wave Equation

By Hitoshi KUMANO-GO
Department of Mathematics, Osaka University
(Comm. by Kinjir6 KUNUGI, M.J.A., Oct. 12, 1963)

1. Introduction. In the recent note [4] F. John has constructed
the following example: For any positive integer m there exists a
solution of the wave equation [u=(0%/0x*+9*/0y*—a*/ot*)u=0, which
is analytic in a cyrindrical domain @={(x, ¥, t); x*+y*<1} and belongs
to C™ in R® not C™*% in the neighborhood of any point outside 9.

The purpose of this note is to construct real valued functions
u, f and g which belong to B and satisfy the equation Lu=(O-+f
d/dt+g)u=0 in R? where the support of u equals to the set R*— 9.

What is remarkable is that the eylinder S={(z, y, t); *+y*=1}
is non-characteristic for L. Hence this example shows that for the
operator L the uniqueness of solutions of the Cauchy problem for
the non-characteristic surface S does not hold. But we must remark
that any solution for the equation with the principal part [, which
has its support in a ‘strictly convex set’ at a point of a time-like
plane, vanishes identically in a neighborhood of that point (see [5]).

Many examples of non-uniqueness have been constructed by A. Plis
[6] and [7], P. Cohen [1] ete., and L. Hormander has proved in the
general theory that the uniqueness for an operator with the principal
part O does not hold even for a time-like plane if we admit complex
valued coefficients (see [3] p. 228). But our example is interesting
in the physical meaning and we can take f=0 if we admit complex
valued g and u.

We shall construct this by the method of A. Plis [7], using the
asymptotic expansion of Bessel functions J,(Aa) in the interval (0,
1—217%77] for a fixed p (0<p<1).

2. Lemma 1. Let J,(a) be Bessel functions of order 2>0. Then,
Jor any fized 0(0<p<1) we have the following asymptotic formula:
(D) J,(Aa)=(272 tanh a)~* exp {2 (tanh a—a)}(14+0(27*%))

(0<a<1l, cosha=a™t, a>0)
which s valid uniformly for every a in (0, 1—A%"%],

Proof. First of all we remark
(2) 1>tanh a=y1—a’=21""" in 0<a<1—2"%%,

We shall use a well-known integral representation of Bessel fune-
tions (see [2] p. 412):
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J(2a) = —— f exp {i(—ia sin L3O} (C=u+iv)

where [’, consists of three sides of a rectangle with vertices at
—n+41to0, —m, 7 and 7+1c, and is oriented from —rmx+ioco to x+7ioco.

Setting f({)=—1ta sin{+i{ we have f({)=(a cosu sinhv—wv)
+4(u—a sinw coshwv). It is clear that we can deform I, to a curve

defined by I': u—a sin % cosh v=0 without varing the values of J,(ia).
Then we have

J(2a)= —23— [exp (2 gwydu

where g(u) is defined by

g(u)=a cosu sinh v—wv

(cosh v(u)=u/(a sinu) (u20) and v(0)=a).
First we evaluate g(u) in —1"*’<u<21"%°. Since

’dv(u) l 1 < U >l< 1 . Clu]
sinhv \asinu/! =~ yu¥/(asinu)’—1 a
=Clu| W1—a*<Ca* "% by (2),
we have |v—a|SCA 2P |u| SCA4 PP in — 1 ¥ZusA ¥,
Hence by Taylor expansion
fu+iv)=7f(ia)+{u+i(v—a)lf'(ia) +{u+i(v—a)l’f"(ia)/2

+ —%—{u—l—i(v—a)? f (L= 0)2F " (ia+ 0w+ i (v— )} d,

we have
(3) 9(u)=F (u+iv(u))=(tanh a—a)—u* tanh a/2+0(1"%).

Here we must remark f'(ia)=0 and |f"(la+60{u+i(v—a)})|=2.

Consequently we have
12/

exp {Ag(u)}du=exp {i(tanh a—a)}

L =2/

~2/5
% f exp { ~ u? tanh a} du(14-0(2~1%))

L =26
2

=exp {A(tanh a —a)} m’: f exp {— 7—”2—} dw

—f_zl/ma/tanhf}_ e }exp {__;}dw](l-i-O(l‘l/ﬁ)).

A0 ynh

Remarking AV"Jtanh a= A1/ = 1-0/10 1y (2) we get
1=2/8
o exp {1g(w)}du=(2x2 tanh a)~ "2 exp {A(tanh a —a)}(1+0(2"1%)).
L =2/
Since ¢'(u)=0 in 0sSus =+ by easy computation, we have g(u)
<Max {g(27*?), g(—27**)}, and by (3) and A~** tanh a>1"“**’? we have

-2/5

{ f—-z + f }exp {29(w)}du=0 - exp {A(tanh a—a)} exp {—14~"7%/3}

g —2/5

—O(l ¥5)(2z2 tanh a) 2 exp {A(tanh a — a)}. Q.E.D.
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Lemma 2. Consider G, (r)=J,s(m’r) in the interval 1—Mm™*
<rsl—m~% with any fixed constant M>1. Then we have
(4) G.(r)=(1+0(1))(2x%) *m 5 exp {(140(1))2V 2 /3 - I**m?}
(r=1—Im™3).
Remark: It is essential in the following discussion that the
exponent of [ is larger than 1.
Proof. In (1) we set 2z=m® and p=5/6, then we have
— =1/2(1 —_ 2\ ~1/4p), -8 Texp(«/l———‘r‘z)}"'e
(3)  Gulr)=(2m) 1=y o~ { TR OA=DN™ (1-+o()
O<r=s1—m=3).
Set f(r)y=r(r++1—=r5texp WI—7%). Then, as f'(r)=r3*1—vI—7%)
VI=7% exp (VI—=7r})=(14oL)W2V1—7r in 1—Mm *<r<1, we have

F)=1-V2(A+o(1) [ I rdr=1+01))2/2/3 - (1—r)"".

Hence, for r=1—Im 3 (1<I<M) we have by (5)

G,.(r)=140(1))(27%) Y4m 21 — (1 +0(1))2V 2 /3 - I¥*m 3"

=(1+0(1))(27r2l)'1/4’m'5/2(e—I—O(l))_(”"“m‘/g/s'lw”‘”,
and get (4). Q.E.D.

Lemma 3. Set F, (r)=G,(m ‘(m—1)r) and r,(s)=1+m ' —sm™!
(m+1)"Y0=s<1). Then F, (r) satisfy differential equations
(6) Fl(r)y+rFl(r)—(mbr 2 —m*(m—1)*)F, (r)=0
and
(7)) Fou(r.(s)=Q+0(1)(2z*(1+s)) m™>*

xexp {(14+0(1)2V2/3 - (1+8)*m*} (0=s=1).
Furthermore, if we determine 7,., such as
(8) T tF i (27)=Fo(7,.4(27Y))
(ru()=14+m**—sm ' (m+1)", 0=s<1).
then we have
(9) Tme1=e€xp {—m’}
and
(10) { 1) TwerFua(Pn(8)) =Cexp {—m*/15}F,(7,,.4(s)) (0=s=1/4)
i) Fo(r,.(8)=Cexp {—m*15}y, 1 Fis(T.1(8)) (8/4=s=1)
for sufficiently large m.

Proof. (6) is clear, and because of m '(m—1)r,(s)=1—(1+s+0
(m ))m™? we get (7) by (4).

Since F,(7,.,.(8)=F,(r,,1+s+0(m™1))), applying the mean value
theorem such as 2**—y"?=38/2 - V0 (x—7y) (xsS0s5y) we get (9) by (7),
and writing

Fo(rn8)  _ Fu(rni(8) | Fulrwa™)  TwerFma(rn.a(27Y)
TuetFme1i(Tna1(8)  Fu(Pnia(27Y) 701 Foes(01(27) Ve sF s s(75044(8))
we get (10).

3. Theorem. There exist real valued functions u,, f, and g,
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of class B in R® which satisfy the equation
0* 0* 9° 0
(11) Olu,]= <59? + —a? — 5{;) Uo= <fo% +g0> U,
where supp u,” equals to R*— D(D={(z, y, t); *+y*<1}).
Proof. Set u,(r, 6,t)=F,(r) cos (m*O+m*(m—1)%) (r>1).
Then, by (6) we have
L[u,]=(3*/or*+r-'0/or+r *6°/06*— &*/ot*)u,,=O0.
Take functions A(r) and A,(r)eCg ., such that
(1 in a nbd.” of [1/8,7/8]
A("'")“{o in a nbd. of [1, o),
and for sufficiently large M >1 to be fixed later
__ (0 for r<1+4(M+2)™*
(12) AM(T)_{I for r=14+(M+2)"1+1/4 - (M+1)"Y(M+2)"1.
Set A, (r)=A(m?*2 - {[r—A+m )}+1) (m>M).
Then, we have for sufficiently large m
_(Lin anbd. of (ei—Lun )= (=1, )"
(13) Am(”)—{o in (0, 1+(m+1)-] (1 +m"", 00).
Now we define u(r, 6, t)eC3yyy by

(14) u(r, 0, t) = Au(r)ua+ §+17‘M+1' s AL(ru,
with 7, defined by (8), and set
F=g=0 in K=[1+M+1)", )7 [ (L2710
=L[u]—"_ and g=L U in Ko
f=Llu) 5t and g=L[u] g in
where u,,=0d/0t v and K°=the complement of K in (1, o).
By the recursion formula of Bessel functions
(16) 2J;:Jx—1‘|‘J1+1
and (7), we have for 1+(m+2)'<r<1+4+m?
|dffdr* F,(r)| =C, exp {o(m’)}F,(7).
Hence, for 14+(m+42)"'=r=1+(m+1)"' (m=M), we have by (7) and
(16)
(17) | D*u|® <Citarire* + = o7 (Fy 7041 F 1) €xp {o(m?)}.
As 7y e Sexp {—m*/5+CiM*} by (9), remarking 1+(m-+2)!
<r<14+(m+1)"' we get by (7).
(18) | D'u|=C; exp {—Cm'}<C, exp {—Cy(r—1)""/16}->0 (r\1).
1) supp u=the closure of {(x, y,¢); u(x,y, t)=0}.
2) ‘nbd.’ is the abbreviation of ‘neighborhood’.
3) In=[14+(m+1)"*, 14+m] and
Ln=[14+m ' —=k/4-m(m+1), 1+m = (k—1)/4-m (m+1)"] (k=1,---,4).
4) If we admit complex valued coefficients, taking

um(r, 0, {)=Fn(r) exp {& =1 (m%0 +m*(m—17t)}, f=0 and g=L{u]/u
we can continue the similar discussion.

ok 2)1/2
5) wkm:{ “Wat,u} .

(15)

>
i+jFi=Fk
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Now, consider u’+4-u}, in I,,,;, for m=M. Since
WU, =0 o Vil (WA Uiy ) 12— 7 i1 Amis(Ui 1+ U 112)}
Zr?uu' e 'Tfn{Fm(/r)z/z—Cam6T72n+1Fm+1(’r)2}y
we have by i) of (10)

(19) u2+uft;3_1r§u+1' e 'TmFm(r)2>0 ln Im+1 19
and so by ii) of (10) we have
(20) u2+ulzzg.3_1712u+1' M '7/3»7‘12n+1Fm+1(/")2>0 in Im+1 4

Hence, as L[u]=0 in a neighborhood of I,,.,,~1,.,; we have fand
g are of class C3hyy.  As LIul=L[ru.1* *TurtAnsi%ner] i Ly,
we have by (16) and i) of (10)

1)  [DL[u]| =Cyialasr®* * T meam®*® exp {o(m)}F,, (7).

We can write

u
|| = |DH{Egu] e [t}
_ s, DEELA] o (DL D]
sy T @t T \@irad) R (i ud)

Hence, by (17), (19), and (21) we have
| Dif| < Com** Py o I a(7) F (7)) exp {o(m?)},

and using i) of (10) we get in I,,,,
(22) | D'f| <CY exp {—m’/16}.
By (17), (20) and ii) of (10) it is clear that we can get (22) in I,,,,,
and further for g in I,,,,~1,,,,  Hence, for 14+(m+2)'<r
S<1+(m+1)"' we get by (15)
(28) | DY, | D*g| =C,exp{—m*/16}<C, exp{—(r—1)*/167}>0 (r\1).

Now, we take the non-singular transformation:
x=7rcos 0, y=rsin §(r>0). Then, L takes the form 1. If we define
for a sufficiently large fixed M, u,=f,=g,=0 in QD=the closure of 9
and w,=u, f,=f and g,=g defined by (14) and (15) respectively in 9°
with x=7 cos @, y=7r sin ¢, then it is clear that u,f, and g, satisfy
the desired conditions by the periodicity of u,f, ¢ and (18), (23), and
the boundedness of Bessel functions. Q.E.D.
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